酸血小板高是什么病病,是怎么得的?

胆红素_百度百科
关闭特色百科用户权威合作手机百科
收藏 查看&胆红素
胆红素是的一种,它是人胆汁中的主要色素,呈橙黄色。它是体内铁化合物的主要代谢产物,有毒性,可对大脑和神经系统引起不可逆的损害,但也有抗氧化剂功能,可以抑制亚油酸和磷脂的氧化。胆红素是临床上判定的重要依据,也是的重要指标。外文名Bilirubin韩文名????俄文名билирубин颜&&&&色橙黄色
胆红素属于二甲川胆色素(biladiene)的一种胆汁色素。为红褐色的色素体,不溶于水,难溶于、、易溶于。最大吸收为432纳米(碱中),540纳米(氯仿中)。人和肉食动物的胆汁中含量丰富。血液胆红素,在加入重氮试剂而出现的红-紫色的Hijman van den Bergh反应中,存在着两种型:一种是不加醇就出现的直接型,另一种是加入醇才显色的间接型。第一种型是单或双葡糖醛酸(酯),第二种是游离型,是血红蛋白的正常代谢产物,可通过胆绿素的还原形成,如进一步还原,经乙烯基变成乙基的中胆红素C30H40O6N,次甲基全为氢所饱和,形成中胆色烷(mesobilirubinogen)(尿胆素原)C33H44O6N4
胆红素是由中的血色素所制造的色素,红细胞有固定的寿命(正常红细胞的平均寿命约为120天),每日都会有所毁坏。此时,血色素会分解成为正铁(haem)和血红素。正铁血红素在NADPH和H作用下生成胆绿素.三价Fe离子和CO,胆绿素再在NADPH和H离子作用下生成胆红素。血红素则会重新制成组织蛋白。
由于胆红素有毒性,胆红素入血后形成胆红素-清蛋白复合物。在进入肝之前胆红素-清蛋白复合物分离成胆红素和清蛋白,即间接胆红素。进入肝后胆红素会与肝内Y蛋白和Z成胆红素-Y蛋白和胆红素-Z蛋白,这个反应是可逆的。胆红素-Y蛋白和胆红素-Z蛋白在UDP-葡萄糖醛酸转化酶的作用下生成葡萄糖醛酸胆红素,即。随着进入,在小肠内脱掉葡萄糖醛酸再次生成胆红素,胆红素生成胆素原,胆素原进一步氧化成黄褐色的胆素,这就是粪便的主要颜色。在小肠里的胆素原可以经过再次到达肝,但这部分的胆素原大部分仍以原形排到肠道,这部分称为粪胆原。一小部分的胆素原进入体循环,并随尿排出。它是尿颜色的来源之一,是尿液中主要的色素,这部分称为。
红细胞受到破坏有时,会变成间接型高胆红素血症。此外,当肝细胞有异常时会引起直接型、间接型高胆红素血症,胆管、胆道系统阻塞时,会引起直接型高胆红素血症。有异常值时的处理方法配合其他检查结果确实掌握病情,再治疗致病的原因。依不同的情况可分别采取急性肝衰竭处置、、肝外胆汁淤滞紧急处置等方法。
除了之外,一般人的值大致固定,并无年龄上的差异。此外,饮食与运动也几乎不会引起变动,但长时间绝食后会有上升的趋势。总胆红素胆红素:间接胆红素偏高,直接胆红素偏高,说明肝细胞性黄疸,肝细胞受到损害,肝功能减退,肝脏不能完全将间接胆红素转化为直接胆红素,同时肝内胆管受压引起了排泄障碍,直接胆红也不能完全排到胆道,同时有可能伴有急性黄疸型肝炎,慢性活动性肝炎,肝硬化,肝癌等疾病。
直接胆红素:说明是由阻塞性黄疸造成的。
间接胆红素:说明可能是溶血性黄疸造成的,直接胆红素升高也可能会有输血时血型不合,贫血等原因
在里,胆红素正常值范围如下:
[]1.71~17.1μmol/L(0.1mg/dl~1.0mg/dl)
[]0~3.42μmol/L (0~0.2mg/dl)
[0~13.68μmol/L(0~0.8mg/dl)体内含的化合物有、、过氧化物酶、及细胞色素等。成人每日约产生250~350mg胆红素,胆红素来源主要有:①80%~85%的胆红素来自衰老的红细胞崩解。②约15%左右是由在造血过程中尚未成熟的红细胞在骨髓中被破坏(骨髓内无效性红细胞生成)而形成的。③少量来自含血红素蛋白(hemoprotein),如、过氧化物酶、细胞色素等的破坏分解。有人把这种不是由衰老红细胞分解而产生的胆红素称为“旁路性胆红素”。肝、脾、骨髓等将衰老的和异常的红细胞吞噬,分解血红蛋白,生成和释放游离胆红素,这种胆红素是非结合性的(未与葡萄糖醛酸等结合)、脂溶性的,在水中溶解度很小,在血液中与结合。由于其结合很稳定,并且难溶于水,因此不能由肾脏排出。胆红素定性试验呈间接阳性反应。故称这种胆红素为未。
肝对胆红素的处理,包括三个过程。
“摄取”:未随血流至肝脏,很快就被摄取,与肝细胞Y蛋白和Z蛋白结合(这两种载体蛋白,以Y蛋白为主,能够特异地结合包括胆红素在内的有机阴离子)被动送至滑面内质网。
“结合”:Y蛋白—胆红素和Z蛋白—胆红素在滑面内质网内,未通过微粒体的UDP-葡萄糖醛酸基转移酶(UDPGA)的作用,与结合,转变为结合胆红素。主要的是胆红素双葡萄糖醛酸酯,另外有一部分结合胆红素为胆红素硫酸酯。这种胆红素的特点是水溶性大,能从肾脏排出,胆红素定性试验呈直接阳性反应。故称这种胆红素为结合胆红素。
“分泌”:在肝细胞浆内,与酸盐一起,经胆汁分泌器(高尔基复合体在过程中有重要作用),被分泌入毛细胆管,随胆汁排出。由于毛细胆管内胆红素浓度很高,故胆红素由肝细胞内分泌入毛细胆管是一个较复杂的耗能过程。
体内红细胞不断更新,衰老的红细胞由于细胞膜的变化被网状内皮细胞识别并吞噬,在肝、脾及骨髓等网状内皮细胞中,血红蛋白被分解为珠蛋白和血红素。血红素在微粒体中(bemeoxygenase)催化下,血红素IX环上的α次甲基桥(=CH-)的碳原子两侧断裂,使原卟啉IX环打开,并释出CO和Fe3+和胆绿素IX(biliverdin)。Fe3+可被重新利用,CO可排出体外。线性四吡咯的胆绿素进一步在胞液中胆绿素还原酶(辅酶为NADPH)的催化下,迅速被还原为胆红素。 血红素加氧酶是胆红素生成的限速酶,需要O2和NADPH参加,受血红素的诱导。而同时血红素又可作为酶的辅基起活化分子氧的作用。
用X线衍射分析胆红素的表明,胆红素分子内形成氢键而呈特定的卷曲结构分子中Ⅲ、Ⅳ两个吡咯环之间是单键连接。因此,Ⅲ环与Ⅳ环能。在一定的空间位置,Ⅲ环上的丙酸基的羧基可与Ⅳ环,Ⅰ环上亚氨基的氢和Ⅰ环上的羰基形成氢键;Ⅳ环上的丙酸基的羧基也与Ⅱ环、Ⅲ环上亚氨基的氢和Ⅱ环上的羰基形成氢键。这6个氢键的形成使整个分子卷曲成稳定的构象。把极性基团封闭在分子内部,使胆红素显示亲脂、疏水的特性。在生理pH条件下胆红素是难溶于水的脂溶性物质,在网状内皮细胞中生成的胆红素能自由透过细胞膜进入血液,在血液中主要与血浆白蛋白或α1球蛋白(以白蛋白为主)结合成复合物进行运输。这种结合增加了胆红素在血浆中的溶解度,便于运输;同时又限制胆红素自由透过各种,使其不致对组织细胞产生,每个白蛋白分子上有一个高亲和力结合部位和一个低亲和力结合部位。每分子白蛋白可结合两分子胆红素。在正常人每100ml血浆的血浆白蛋白能与20-25mg胆红素结合,而正常人血浆胆红素浓度仅为0.1-1.0mg/dl,所以正常情况下,血浆中的白蛋白足以结合全部胆红素。但某些有机阴离子如磺胺类、脂肪酸、、水杨酸等可与胆红素竞争与白蛋白结合,从而使胆红素游离出来,增加其透入细胞的可能性。过多的可与脑部基底核的脂类结合,并干扰脑的正常功能,称胆红素脑病或核黄疸。因此,在新生儿高胆红素血症时,对多种有机阴离子药物必需慎用。
结合胆红素经随胆汁排入肠内,被细胞还原为尿(粪)胆素原。绝大部分尿(粪)胆素原随粪便排出,小部分(约1/10)被肠粘膜吸收经门静脉到达肝窦。到达肝窦的尿(粪)胆素原,大部分通过肝脏又重新随胆汁由胆道排出(),仅有小部分经体循环,通过肾脏排出。
在胆红素代谢过程中,任何一个环节发生了障碍,都将引起胆红素在血浆内含量升高,产生(hyperbilirubinaemia)。未结合胆红素生成过多
这主要是由于红细胞本身的内有缺陷(如某些酶的缺乏或血红蛋白异常)或红细胞受外源性溶血因素的损害(如疟疾、免疫性溶血、蛇毒、苯胺等),造成大量红细胞破坏,产生大量的未,若超过了肝细胞的处理能力,则使血液中未结合胆红素增多,而出现黄疸。在一些贫血的病人,由于骨髓红细胞系统增生,骨髓内无效性红细胞生成增多,这种红细胞多在“原位”破坏,而未能进入血循环,或是进入血循环后红细胞生存的时间很短(数小时),而使未增多。
由于红细胞破坏过多,使未增多而引起的黄疸,称为溶血性黄疸(hemolytic jaundice)。其胆色素代谢特点是:
各型黄疸的胆色素代谢变化特点
-正常  增加↑  减少↓  没有○
1.血清未增多由于肝脏对未结合胆红素的处理有很大的储备力,一般血清总胆红素含量不超过3-5毫克%。定性试验呈间接阳性反应。
2.粪内尿(粪)胆素原增多这是由于肝脏加强制造,排入肠道的胆红素增多所致。
3.尿内尿(粪)胆素原增多,胆红素阴性。
对胆红素摄取障碍
肝细胞摄取未障碍,可见于下列原因:
1.由于肝细胞受损害(如病毒性肝炎或药物中毒),使肝细胞摄取未的功能降低。
2.新生儿肝脏的发育尚未完善,肝细胞内载体蛋白少,因而肝细胞摄取胆红素的能力不足。
3.吉伯特(Gibert)氏病是一种先天性、非溶血性黄疸,它是由于窦侧微绒毛对胆红素的摄取障碍所致。临床检验发现,这种病人的肝脏对未的清除能力只有正常人的1/3,其一般不超过3毫克%(在高于5毫克%和重型病例中,还发现肝组织内UDP-葡萄糖醛酸基转移酶活性降低)。
肝细胞摄取障碍的胆色素代谢特点是(表15-2):血中未增高,血清胆红素定性试验呈间接阳性反应;尿内无胆红素;粪和尿排出的尿(粪)胆素原偏低。
肝细胞内胆红素结合障碍
肝细胞内胆红素结合障碍可见于下列原因:
1.肝细胞受损害(如病毒性肝炎或药物中毒),使肝内葡萄糖醛酸生成减少或UDP-葡萄糖醛酸基转移酶受抑制。
2.新生儿肝内UDP-葡萄糖醛酸基转移酶的生成不足(要在出生后10个月左右才渐趋完善)。而且母乳汁内的孕二醇,对UDP-葡萄糖醛酸基转移酶有抑制作用。
3.格勒—纳亚(Crigler-Najiar)二氏综合征:这是一种伴有核黄疸的新生儿非溶血性、家族性黄疸。用同位素标记胆红素所作的试验证明,肝脏不能使胆红素与葡萄糖醛酸结合。这是由于肝脏缺少UDP-葡萄糖醛酸基转移酶所致。这种黄疸危害性大,大多数患儿死于核黄疸(nuclear jaundice),或称胆红素脑病。因为未毒性比较大,高浓度的未结合胆红素有抑制氧化磷酸化作用。另外未是脂溶性的,和脂质多的组织亲和力大;再加上新生儿或婴幼儿血脑屏障发育还不完善,未结合胆红素容易透入脑组织,沉积在内,特别是在大脑基底核、、海马被胆红素所深染(故称核黄疸),引起功能障碍,表现为精神不振、嗜睡、降低或增强,甚至发生、和强直。
肌细胞内胆红素结合障碍,胆色素的代谢特点
(1)血清未增高(Grigler-Najiar二氏综合征Ⅰ型,UDP-葡萄糖醛酸基转移酶完全缺乏,血清未结合胆红素可高达25-45mg%),定性试验呈间接阳性反应。
(2)尿内无胆红素。
(3)由于生成减少,因此,尿(粪)胆素原从粪和尿排出明显减少。
肝细胞对胆红素分泌障碍
肝细胞内是与、胆汁酸盐、、水及电解质组成肝胆汁,通过高尔基复合体和微绒毛,分泌到毛细胆管的。“单纯的”或选择性胆红素分泌障碍是很少的。—(Dubin-Johnson)综合征和罗特(Rotor)综合征,是两种很相似的慢性特发性黄疸,可发生在同一家族中。其胆色素代谢特点是:血清内增多,呈直接反应;尿中胆红素阳性。同时肝细胞对酚四溴酞钠(BSP)的排泄也有障碍,但胆汁酸盐分泌和胆流正常,没有。目前认为可能是由于对胆红素和带阴性离子异性染料的分泌有先天性缺陷,胆红素不能定向地向毛细分泌而返流入血窦,使血清内增多。中文名称:胆红素
中文同义词:胆红质 ;胆深红;胆红素;胆深素;
英文名称:Bilirubin
英文同义词:HEMATOIDIN;BILIRUBIN (EX PIG);BILIRUBIN;BILIRUBIN (ALPHA);21H-BILINE-8,12-DIPROPANOIC ACID,2,17-DIETHENYL-1,10,19,22,23,24-HEXAHYDRO-3,7,13,18-TETRAMETHYL-1,19-DIOXO-;2,17-Diethenyl-1,10,19,22,23,24-hexahydro-3,7,13,18-tetramethyl-1,19-dioxo-21H-biline-8,12-,13,18-tetramethyl-1,19-dioxo-;1,10,19,22,23,24-hexahydro-2,7,13,17-tetramethyl-biline-12-dipropionicacid
CAS号:635-65-4
分子式:C33H36N4O6
分子量:584.66
EINECS号:211-239-7红色或棕红色粉末,不溶于水,可溶于苯、氯仿及二硫化碳等有机溶剂中,微溶于乙醇和乙醚,胆红素也可溶解在热的乙醇与氯仿的混合液中,胆红素的钠盐易溶于水,但钙盐、镁盐、钡盐,则不溶于水。胆红素为淡橙色或深红棕色的单斜晶体。其干燥固体较稳定,氯仿溶液置暗处也较稳定,在碱液中(如0.1mmol/L 氢氧化钠)或遇三价铁离子则不稳定,很快被氧化为胆绿素。胆红素可与甘氨酸、丙氨酸或组氨酸结合。加血清蛋白、维生素或EDTA可使胆红素稳定。一种血红素分解的主要组分;胆汁的主要色素;具有抗氧剂以及有效的过氧化氢基清除剂的功能,保护细胞膜脂质免于这些活性基的氧化作用。 胆红素具备多种药理作用,是制造人工牛黄的主要原料。药理实验证明,它对W256瘤有较好的抑制作用,对乙型脑炎病毒的灭活率、抑制指数比去氧胆酸和胆酸高1~1.5倍;它还是一种有效的肝脏疾病的治疗药物,在不破坏肝组织的情况下,有增殖新细胞的作用,可治疗血清肝炎、肝硬变等病,此外,胆红素具有镇静、镇惊、解热、降压。促进红血球新生等作用。-20°C密闭,防潮,避光保存。由动物胆汁中提取。安全等级:22-24/25。鉴别
(1)取〔含最测定〕项下溶液,照(附录ⅤA),在400~500nm波长处,测定吸收曲线,并与胆红素对照品图谱比较,应一致,其最大吸收为453nm。
(2)取本品,加三氯甲烷制成每1ml含0.lmg的溶液,作为供试品溶液。另取胆红素对照品同法制成对照品溶液。照薄层色谱法(附录ⅥB)试验,吸取上述两种溶液各10μl,分别点于同一硅胶G薄层板上,以甲苯-乙酸乙酯-冰醋酸(10:l:0.5)为展开剂,展开,取出,晾干。供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的斑点。
检查 干澡失重取本品约0.5g,五氧化二磷60℃减压干燥4小时,减失重量不得过2.0%(附录ⅨG)。取本品约10mg,精密称定,用少量三氯甲烷研磨后转移至100ml棕色量瓶中,超声处理使溶解,取出,迅速放冷,再加三氯甲烷稀释至刻度,摇匀。精密量取5ml,置另一100ml棕色量瓶中,加三氯甲烷稀释至刻度,摇匀。照紫外-可见分光光度法(附录ⅤA),在453nm的波长处测定吸光度,按胆红素的()1038计算.即得。1、从人的胆汁中提取胆红素的直快法。
2、胆红素常温制取工艺方法。
3、胆红素的定量方法。
4、胆红素的制备方法。
5、胆红素精制工艺流程。
6、胆红素快速提取方法。
7、高分子树脂型胆红素吸附剂的制备方法。
8、高含量快速提取胆红素的方法。
9、狗体引流提取胆红素的方法和装置。
10、高效应封闭法制取胆红素技术。
11、活猪体外引流胆汁的装置及胆红素的提取工艺方法。
12、活猪引流胆汁的一种方法。
13、碱化游离-氯仿萃取制胆红素技术。
14、利用人的废提取胆红素的方法。
15、双稳法由制取胆红素的方法。
16、利用人废胆汁提取胆红素的方法。
17、酶法合成胆红素。
18、溶液中胆红素的测定方法。
19、提取胆红素的生产工艺。
20、双管体内合成胆红素的技术。
21、獭狸胆红素和獭狸血红素及其制取方法。
22、提高活猪引流胆汁中胆红素含量的新方法。
23、提高引流胆汁中胆红素含量的方法。
24、吸附胆红素的环糊精交联聚合物微球及其制备和应用。
25、血液分解法生产胆红素新技术。
26、一步法提取胆红素的工艺。
27、一种胆红素氧化酶的制备方法。
28、用试纸快速测定胆红素含量的方法。
29、直接快速提取胆红素的方法。一、胆红素偏高可能是由肝脏疾病引起的。因为当发生病变、或因肝细胞肿胀时(多是患有、急性黄色肝坏死、、等肝脏疾患造成的),可导致肝内的胆管受压,排泄胆汁受阻,从而即可引起血中胆红素偏高的现象,而发生肝细胞性黄疸(表现为直接胆红素与间接胆红素均升高)。
二、胆红素偏高也可能是引起的。当肝外的系统发生肿瘤或出现,而将胆道阻塞时,胆汁不能顺利的排泄,即可引起胆红素偏高,而发生。据研究表明,胆红素的颜色为橙黄色,并且当血液中的胆红素偏高时,则会表现为巩膜发黄、皮肤发黄、黏膜以及其他组织和体液发黄,出现黄染。具体来讲就是:
1、当胆红素浓度远远高于胆红素正常值时,皮肤、、尿液呈现黄色,即黄疸。其中肝脏发生、坏死、中毒等损害时均可以引起黄疸,胆道疾病及也可以引起黄疸。
2、如果胆红素的值在17.1—34.2μmol/L之间,肉眼看不到黄疸,叫。
3、如果胆红素的值大于34.2μmol/L,肉眼能看到眼睛发黄、、尿液发黄,叫显性黄疸。总胆红素的值越高,黄疸越重。人的红细胞的寿命一般为120天。红细胞死亡后变成间接胆红素(I-Bil),经肝脏转化为直接胆红素(D-Bil),组成胆汁,排入,最后经大便排出。这就是肝脏内胆红素的正常转化。
但是如果出现其他疾病,则会导致肝脏代谢异常,进而间接胆红素无法正常转化为直接胆红素,导致血清中胆红素偏高。此时可能发生;当发生病变时,或者因胆红素不能正常地转化成胆汁,或者因肝细胞肿胀,使肝内的胆管受压,排泄胆汁受阻,使血中的胆红素升高,这时就发生了;一旦肝外的发生肿瘤或出现,将胆道阻塞,胆汁不能顺利排泄,而发生阻塞性黄疸。患者的黄疸一般为肝细胞性黄疸,也就是说直接胆红素与间接胆红素均升高,而的患者以直接胆红素升高为主。那么从病理上讲,导致血液中胆红素偏高的情况主要包括以下几种:
1、总胆红素、直接胆红素增高:肝内及肝外阻塞性黄疸,胰头癌,毛细胆管型肝炎及其他胆汁瘀滞综合征等。
2、总胆红素、间接胆红素增高:,血型不合输血,恶性疾病,等。
3、总胆红素、直接胆红素、间接胆红素都增高:,慢性,,等。
4、间接胆红素偏高,体内的红细胞破坏过多,会使肝脏不能完全把间接胆红素转化为直接胆红素,导致体内间接胆红素偏高,引起间接胆红素偏高常见原因有、输血时血型不合、新生儿黄疸等;
5、直接胆红素偏高,若肝细胞受损,直接胆红素不能正常转化为胆汁,或是受阻,都会引起直接胆红素偏高,引起直接胆红素偏高的常见病因有肝内及肝外阻塞性黄疸、胰头癌、毛细胆管型肝炎及其他胆汁瘀滞综合征等。胆红素是血液中红血球的血红素代谢后的废弃物。若是血清中胆红素过高时,预示肝脏病变或胆管阻塞等异常讯息,的数值的高低代表着异常的严重程度。如果红细胞破坏过多,产生的间接胆红素过多,这样就会使得肝脏不能完全把它转化为直接胆红素,进而发生溶血性黄疸。
胆红素不能正常地转化成胆汁、发生病变、肝细胞肿胀、肝内的胆管受压或排泄胆汁受阻都会使得血中的胆红素升高,进而发生肝细胞性黄疸;肝外的胆道系统发生肿瘤或,胆道阻塞,胆汁不能顺利排泄,进而发生。肝炎患者的黄疸主要为肝细胞性黄疸。
1)。由于一些溶血性疾病,可以使红细胞破坏过多,导致血中的间接胆红素增多。
间接胆红素偏高的危害:
1)红细胞破坏过多。
2)间接胆红素可透过细胞膜,对细胞有毒害作用,不能通过肾脏排出体外。
3)间接胆红素偏高说明肝脏的代偿能力低下或者肝脏出现了问题。
直接胆红素偏高的危害:
1)直接胆红素偏高通常是由肝脏疾病引起,常见有,急性黄色肝坏死,,肝硬化等。
2)如果患者体内红细胞破坏过多,产生的间接胆红素过多,这样就会使得肝脏不能完全把它转化为直接胆红素,便会发生溶血性黄疸。
总胆红素偏高的危害:
1)总胆红素偏高引起肝脏疾病,、、慢性活动性肝炎、肝硬化等。
2)总胆红素偏高引起的肝外疾病,溶血型黄疸、新生儿黄疸、、胰头症等。建议胆红素高的患者去医院做进一步检查以明确,根据具体的情况制定用药方案。比如对乙肝患者的治疗,需要检查、HBVDNA等,根据检查结果进行或者保肝降黄治疗。此外,也建议的患者养成良好的生活习惯,在日常生活中注意以下几个方面:
1、饮食宜清淡,多吃豆类制品、鱼类、蔬菜、水果等含有大量的维生素A、B、C、E、有较好的功能且易消化吸收的食物,不要吃过多甜食,禁酒。
2、宜多食、香菇、芝麻、核桃、大枣、瘦肉及动物肝脏等食物。
3、饭后宜卧床休息1-2小时,保证肝脏得到充足的血液供应,有利于肝细胞修复和再生,帮助恢复肝功能。
需要注意的是,的患者在治疗过程中要注意定期复查肝功能等,观察治疗效果,及时调整治疗方案。胆红素偏高患者应饮食宜清淡,且富有营养。如豆类制品,鱼类、蔬菜、水果等,含有大量的维生素A、B、C、E、有较好的抗氧化功能且易消化吸收。宜多食香菇、芝麻、核桃、大枣、瘦肉,但胆红素偏高患者应不宜食用动物肝脏类食物。乙肝患者出现胆红素偏高的时候一定要引起重视,及时到正规肝病医院进行治疗。
胆红素偏高患者应忌饮酒,酒精中的乙醇对肝脏的伤害是最直接,也是最大的。研究表明,重度饮酒者中80%以上有一定程度的脂肪肝,10%至30%可发展为酒精性肝炎,10%至20%将发展为肝硬化。平时应多饮水,喝水可以补充体液,增强血液循环,促进新陈代谢,多喝水还能够促进腺体,胆红素偏高患者特别是消化腺和胰液、胆汁的分泌,这样利于消化、吸收和废物的排除,可以减少代谢产物和毒素对肝脏造成的的损害。
胆红素偏高患者应适量的运动可以让身体的新陈代谢,血液循环增强,帮助肝肾代谢的废物,比较快地排泄出去--流汗,这样对胆红素偏高患者身体健康有好处,还可以提高人体抵抗疾病的能力,所以胆红素偏高患者平时要多户外活动,如散步、踏青、打球、打太极拳等,但要注意肝不好的人不宜剧烈运动。婴儿胆红素的正常值的范围是总胆红素3.4~17.1mol/L,直接胆红素在0~6.8mol/L以下,间接胆红素在1.7~10.2mol/L以下。
婴儿胆红素临界值的范围:总胆红素的临界值是1.3~1.5mg/dl,若婴儿超过此数值即可视为异常。
婴儿胆红素正常生理期的波动范围:婴儿出生24小时后可由出生时的17~51μmol/L逐步上升到86μmol/L或以上,临床上出现黄疸但无其它症状,1~2周内自动消退,即为婴儿胆红素正常的期。婴儿的不超过204μmol/L不超过255μmol/L,并注意及预防胆红素的发生。刚出生24-72小时之后,出现巩膜、皮肤、尿液黄,间接胆红素偏高,此时婴儿精神好,吃奶旺盛,不哭不闹,一周之后逐渐减轻,两周内消退干净,早产儿一般3周内消退,黄疸出的晚,退得早,这属于正常现象,爸爸妈妈们都不必担忧。婴儿出生一天内,出现黄疸,间接胆红素偏高,并且此时精神不佳、拒奶、哭闹,两周之后不退,需要到医院进行检查,根据病情进行治疗。
新手上路我有疑问投诉建议参考资料 查看孕妇总胆汁酸偏高是什么原因引起的
时间: 17:19:22
健康咨询描述:
怀孕36周多,昨天去检查,总胆汁酸偏高,正常值是0-10,但是我的是16,肚皮会瘙痒,但不会非常痒,肝功能检查都是正常的,医生建议提前住院,没有住院就是每天去做胎心监护,我想说每天去做胎心监护及吸氧可以吧?没有治疗,医生说很严重,说要住院治疗呢。没有治疗,医生说很严重,说要住院治疗呢。
感谢医生为我——该
十大相似问答推荐
医生答案显示区
您好,1、生理原因:正常的饮食也会引起总胆汁酸偏高,2、病理原因:各种肝损害、肝衰竭和肝脏疾病以及药物致肝脏的损伤等。胆汁酸只有在肝胆系统出现问题时才会升高,一般提示的是肝胆方面有问题,一般来讲对宝宝是有一点的影响的。建议您到正规的医院肝胆科就诊治疗,它长期升高是对身体有危害的,应系统的治疗,以免对宝宝和生产有影响。
百度智能推荐
怀孕,指哺乳类雌性(包括人类)在体内有一个或多个胎儿或胚胎。妊娠全过程共分为3个时期:妊娠12周末以前称早期妊娠;第13—27周末称中期妊娠;第28周及其后称晚期妊娠。......
挂号科室妇产科
常见症状、、、择食
检查项目查血HCG、B超
并发疾病疾病、、、
常用药物、
其他信息治疗费用、是否传染、好发人群
补肾,固冲,安胎。用于先兆流产,习惯性流产及因流产引起的...
参考价格:2600
补气养血,保产安胎。用于妊娠气虚,腰酸腿痛,胎动不安,屡...
参考价格:1900
孕妇早期营养品...
参考价格:8820
米非司酮片与前列腺素药物序贯合并使用,可用于终止停经49...
参考价格:900
网友最关注
网友经验分享
浏览:1182
浏览:4574
浏览:12962
浏览:6440
浏览:17997
治病成功案例/我的经验分享
用药指导/吃什么药好
补肾,固冲,安胎。用于先兆流产,习惯性流产及因流...
参考价格:¥26
补气养血,保产安胎。用于妊娠气虚,腰酸腿痛,胎动...
参考价格:¥19
如何收藏问题?
方法一:同时按住Ctrl键和D键收藏问题。
方法二:点击浏览器上的收藏按钮收藏问题。亚麻酸_百度百科
关闭特色百科用户权威合作手机百科 收藏 查看&亚麻酸
亚麻酸简称LNA,属ω-3系列多烯(简写PUFA),为全顺式9、12、15十八碳三烯酸,它以甘油酯的形式存在于深绿色植物中,是构成人体组织细胞的主要成分,在体内能合成、代谢,转化为机体必需的生命活性因子DHA和EPA。然而,它在人体内不能合成,必须从体外摄取。人体一旦缺乏,即会引导起机体,导致降低、健忘、疲劳、视力减退、等症状的发生。尤其是婴幼儿、如果缺乏亚麻酸,就会严重影响其智力正常发育,这一点已经被国内外科学家所证实,并被界所公认。另外,缺乏α-亚麻酸,维生素、矿物质、蛋白质等营养素不能被有效吸收和利用,造成营养流失。[1-2]亚麻籽油是世界上α-亚麻酸含量最高的植物油,亚麻油中α-亚麻酸含量≥51%-65%。外文名α-Linolenic acid, ALA存在形式以甘油酯形式存在于深绿色植物中特&&&&点体内不能合成、代谢,转化缺乏情况引导起机体相关疾病降低、健忘、疲劳等
  1. 按规格使用和贮存,不会发生分解,避免与氧化物接触。
2. 存在于烤烟烟叶、白肋烟烟叶、烟烟叶、烟气中。
3. 作为甘油酯存在于大多数干性油中。含三个双键的不饱和。[3]α-亚麻酸是构成和生物酶的基础物质,对人体健康起决定性作用。是人体健康必需却又普遍缺乏,急需补充的一种必需。在固体总质量占10%;在管学习的海马中占25%;在脑神经及视网膜的中占50%。缺乏α-亚麻酸,、、等营养素不能被有效吸收和利用,造成营养流失。α-亚麻酸比DHA等作用更强,α-亚麻酸在体内可转化为、、等,而补充DHA等只能起到部分作用。是DHA的母体。[4]如果把八大类营养物质比作木板,它们共同组成一个木桶,对所有人而言那么α-亚麻酸都将是最短的一块板,它的高度直接决定健康和营养的水平。美国FDA研究证明:缺乏α-亚麻酸将导致儿童大脑及视网膜发育迟缓,,营养不均衡,不能有效吸收,直接导致智力发育迟缓,动作不协调,视力弱,多动症,肥胖,厌食,发育缓慢,免疫力低下等30多种症状和疾病。健康智慧的关键是营养平衡 营养平衡的关键是补充营养短板α-亚麻酸是所有人群的营养短板
α-亚麻酸()对于人类决不是可有可无的,而是绝对不可缺少的,它对于人类的健康有着极其重要的作用。α-亚麻酸是一种,是一种必需。α-亚麻酸是一种生命核心物质,是构成人体和组织细胞的重要成分,是人类一生中每天都需要的一种营养素。α-亚麻酸是人体自身不能合成的,也是无法由其他营养来合成的,必须要依靠来获得。α-亚麻酸属于ω-3系列(或n-3系列)脂肪酸,它进入人体后,在酶(脱氢酶和碳链延长酶)的催化下,转化成 EPA(Eicosa Pentaenoic Acid,EPA,)和 DHA(Docosa Hexaenoic Acid,DHA,),这样才会被吸收。α-亚麻酸、EPA 和 DHA 统称为ω-3系列(或n-3系列)脂肪酸,α-亚麻酸是前体或母体,而 EPA 和 DHA 是α-亚麻酸的后体或衍生物。
α-亚麻酸,存在于中的时候是一种食品,而制做成胶囊时却是一种。α-亚麻酸主要存在于、籽油之中。许多科学家研究证明:人体过剩和摄入过多的反式脂肪酸是导致、心脑血管病等许多疾病的直接原因,增加摄入α-亚麻酸可以显著地改变这种状态。α-亚麻酸基本功能主要表现为:奥肯迪亚麻籽增强智力,增强免疫力,保护视力,降低血脂,降低血压,降低,抑制出血性脑疾病和,抑制癌症的发生和转移,预防心肌梗塞和脑梗塞,预防,预防炎症以及减缓人体衰老等。α-亚麻酸有益于预防和治疗癌症、心脑血管病、、类风湿病、皮炎症、、、、过敏、哮喘、肾病和慢性塞性肺炎等。人体一旦缺乏α-亚麻酸,就会引起人体,导致降低、健忘、疲劳、视力减退、等症状的发生。尤其是婴幼儿、,如果缺乏α-亚麻酸,就会严重影响其智力和视力的发育。α-亚麻酸有益于大脑健康和智力提高。α-亚麻酸是维持大脑和神经的机能所必须的因子,值得注意的是人体大脑大约有60%是由构成的,神经的生长需要α-亚麻酸作为原料,神经和神经元需要α-亚麻酸来提供能量。α-亚麻酸的衍生物 DHA 是大脑的重要物质,它能够促进促进脑内核酸蛋白质及单胺类神经递质的合成,对于元、,神经传导突触的形成、生长、增殖、分化、成熟具有重要的作用。它能够增进大脑神经膜、突触前后膜的通透性,使神经信息传递通路畅通,提高神经反射能力,进而增强人的思维能力、能力、应激能力。α-亚麻酸对于提高儿童智力和防止大脑衰老都是必需的。对于学生来说,大脑必须获得足够的 DHA 才能有很好的智力和记忆能力,否则即使刻苦学习,大脑细胞也得不到良好的剌激及生长发育,因此每天都必须摄入足够的α-亚麻酸,这样才能有效地提高学习成绩。
对于与幼儿同样具有健脑作用,如果孕妇缺少 DHA,胎儿脑细胞数必然不足,严重时会引起弱智或流产。所以孕妇必须获得足够的α-亚麻酸,才能够通过母体将其衍生物 DHA 输送到胎儿大脑,这对于胎儿大脑的初期发育具有极其重要的作用。α-亚麻酸具有抗癌作用。研究者发现并分离出了导致癌症患者身体消瘦的一种物质,而且还惊奇的发现这一物质的活动受到α-亚麻酸的衍生物 EPA 的控制。这种名叫“法奇非洛克因子”的物质是由某些顽固的肿瘤所产生的,它利用脂肪来供给肿瘤,促使肿瘤的生长,从而使患者身体消瘦。而 EPA 能够控制“法奇非洛克因子”的活动,从而控制癌症患者的消瘦,并且能够使肿瘤缩小。
α-亚麻酸具有降低血脂和降低血压的作用。已经证明α-亚麻酸具有降低血清总、、、极低密度脂蛋白以及升高血清的作用。α-亚麻酸对于临界性来说是非常有效的,对于更高的血压或易产生的状况,α-亚麻酸仍有降血压作用。其降压机理是因为α-亚麻酸能够使血浆中的(胆固醇、)减少,所以能够促使血压降低,进而抑制血栓性疾病,预防心肌梗塞和脑梗塞。经过很多实践得知:使用含有α-亚麻酸的调和油做菜,大约经过半年到一年的时间,可以使人体的得到显著地提高,能够十分有效地防止患感冒病,避免由此引发其它的并发症。
亚麻籽油是世界上α-亚麻酸含量最高的植物油,中α-亚麻酸含量≥51%-65%。亚麻籽是“药食同源”的,亚麻籽是卫生部批准的“既是食品又是药品”名单中的物品。《》载亚麻有“亚麻,补、填髓脑、益气力、去肥浓、节酸咸、长肌肉、润燥祛风;治皮肤瘙痒、、眩晕和便秘”。卫生组织(WH0)和(FAO)于1993年联合发表声明,鉴于α-亚麻酸的重要性和人类普遍缺乏的现状,决定在世界范围内专项推广α-亚麻酸。世界卫生组织(WHO)、中华人民共和国卫生部、中国营养学会等于2000年一致认定α-亚麻酸是3系中唯一的。世界许多国家如、、法国、、日本等国都立法规定,在指定的食品中必须添加α-亚麻酸及代谢物,方可销售。中国人群膳食普遍缺乏α-亚麻酸,日摄入量不足世界卫生组织的推荐量每人每日 1.25 克的一半。目前国内对于α-亚麻酸的认知还很不够,对于α-亚麻酸的使用也极为不普遍,专家纷纷呼吁国家立法专项补充α-亚麻酸。在通常的食物中,α-亚麻酸的含量是极少的。只有白苏籽、、紫苏籽、、核桃、蚕蛹、深海鱼等极少数的食物中含有丰富的α-亚麻酸及其衍生物。富含α-亚麻酸最理想的食品或保健品是:白苏籽油、紫苏籽油、亚麻籽油(或称为)、α-亚麻酸胶囊。在日常生活中使用含有α-亚麻酸的食用调和油做菜是一个非常好的选择。
1999年,国家计委正式批准了《亚麻籽综合开发利用项目》作为国家高科技产业化示范工程(批准文号:计高技【1999】第1429号),并由国家投入资金2.2亿元,先后建设了全球规模最大的120万亩有机亚麻种植基地,成立了内蒙古草原亚麻籽综合开发利用研究所,十几年年来,项目的研究取得了重大的进展。纯物理超低温萃取技术,使产品的生产过程无任何化学添加剂和化学残留,独特的生物活性保持技术,以生命活体形式提取α-亚麻酸,完全保存了α-亚麻酸生物活性,使人体易吸收、易利用,并且常温下可长时间保存,主要产品亚麻油和α-亚麻酸的品质远远超过了世界各国的同类产品,先后获得了13项国家专利和120多项科研成果,以及“全国质量诚信AAAAA级品牌企业”、“国际环保组织有机认证”、 “非转基因食品”等二十多项荣誉和认证。
2009年,国家再次划拨出60万亩土地以进一步支持项目的建设,国家有关领导还专门做出了批示,要求项目承接单位认真规划,科学安排,周密组织,精心指导,取得实效。人体的和食物营养供给之间建立的平衡关系就是营养平衡(或营养均衡)。即:热量营养素平衡(、脂肪、蛋白质均能给人体提供热量,故称为热量营养素),氨基酸平衡,及各种营养素摄人量之间的平衡,只有保持营养平衡才有利于营养素的吸收和利用。如果平衡关系失调,也就是不适应人体的生理需要,就会对人体健康造成不良的影响,甚至导致某些或慢性病。在人们物质生活得到提高的今天,营养平衡中脂肪酸的平衡就显得极为重要。
世界卫生组织(WHO)与联合国粮农组织(FAO)就食用油脂中三种脂肪酸的成分,向世界郑重建议,饱和脂肪酸 :: 多酸 = 1 : 1 : 1 ,这是目前世界上最权威的推荐值。其中多中包括和α-亚麻酸,亚油酸虽然也是一种必需脂肪酸,但是人体的摄入量已经过剩了。比如人们经常吃的,其中亚油酸含量约为 60%。亚油酸和α-亚麻酸在人体内,要争夺同样的酶才能被转化,转化之后才能被吸收。亚油酸吃得太多了,α-亚麻酸就得不到足够的酶进行转化,自然无法被吸收。所以,必须要控制亚油酸和α-亚麻酸摄入量的比值,2000年所指定的推荐标准:具体划分为 0 - 6 个月的婴儿为 ω-6(亚油酸): ω-3(α-亚麻酸)= 4 : 1 ,其余(小学生、青少年、成人、老年人)均为 ω-6 : ω-3 =(4 - 6): 1。
世界卫生组织推荐标准:ω-6 : ω-3 应小于 6 : 1。哈佛大学专家认为人体内 ω-6 与 ω-3 的最佳比例为 1 : 1 ,但现代人类已严重偏离为 25 : 1,甚至为 30 : 1。如今各种含有α-亚麻酸的食用调和油不断的投放市场,不但成为广大消费者生活中必需的食用油,而且还将成为预防的首选食疗油,在引导人们食用油的消费由营养型向健康型转变的过程中,势必引发人类食用油的一场新革命。不科学的饮食能够使人吃出疾病来,而科学的饮食一定能够使人吃出健康来。只要相信科学,按照科学规律改变落后的饮食习惯,人们的身体一定会越来越健康。
关于α-亚麻酸特性介绍α-亚麻酸被称为维系人类进化,增强身体健康的人体必需脂肪酸,是N-3系列不饱和脂肪酸的母体,是生命进化过程中最基本、最原始的物质。人类脑中含有10%左右的α-亚麻酸及代谢物,人类视网膜、中也含有大量的α-亚麻酸及代谢物,若α-亚麻酸缺乏将引起这些器官功能效率降低。N-3系不饱和脂肪酸与其它脂肪酸的最佳比例比1:5,称为比,而日常生活中一般摄入的中不饱和脂肪与饱和脂肪酸比例大于1:25。由于α—亚麻酸分子中存在三个共轭双键,所以有非常强的还原性,高温、空气中的氧气、紫外线以及一些重金属离子都可以将其氧化,故富含α—亚麻酸的食用油应该避光、密封保存,使用时尽量避免高温煎炸,同时在油中加入适量的维生素E作保护作用。公认的疗效
被国际医学界、营养学界所公认:
一、预防:由于血栓形成,血管发生堵塞,组织细胞得不到氧气补充和营养成份的供应,最终会导致死亡。在心脏冠状动脉和脑血管处易形成血栓,引起和。人们已经知道促成的重要因素是凝集的过程。α-亚麻酸可以改变血小板,从而改变血小板对刺激的反应性及血小板表面受体的数目。因此,能有效防止血栓的形成。
二、降:α-亚麻酸的代谢产物对血脂代谢有温和的调节作用,能促进血浆(LDL)向(HDL)的转化,使低密度脂蛋白(LDL)降低,高密度脂蛋白(HDL)升高,从而达到降低血脂,防止动脉粥样硬化的目的。
三、降低临界性:血压在145/90mmHg~160/95mmHg之间叫临界性高血压,是初期性高血压。若长期使用降压药,易引起许多不良反应。α-亚麻酸的代谢产物可以扩张血管,增强血管弹性,从而起到降压作用。
四、抑制癌症的发生和转移:正常的体细胞会因为机体功能的失衡而产生病变,而癌细胞形成后会产生大量的能抑制多种免疫细胞机能的二烯前列腺素,降低人体免疫系统功能,使癌细胞得以增殖和转移。α-亚麻酸的代谢产物可以直接减少致癌细胞生成数量,同时削弱血小板的凝集作用,抑制二烯前列腺素的生成,恢复及提高人体的免疫系统功能,从而能有效地防止癌症形成以及抑制其转移。的发病率很低,是因为他们大量进食鱼类或其它海产品,脂肪摄取量虽然大,但不饱和脂肪酸成份多,主要是n-3系脂肪酸(α-亚麻酸),因此其癌症的发病率极低。
五、抑制过敏反应、抗炎作用:α- 亚麻酸可降低多核白细胞(RMNS)及肥大细胞膜磷脂中(AA)的含量,使过敏反应发生时AA释放量减少,从而降低LT4()的生成;代谢产物 EPA 还有与 AA 竞争△5去饱和酶的作用;α-亚麻酸对过敏反应的中间体 PAF(血小板凝集活化因子)有抑制作用。所以认为,α-亚麻酸对过敏反应及炎症有抑制效果。临床研究得出,的发病机理主要由花生四烯酸代谢紊乱所致,而摄入一定量的EPA后症状得以减轻。大量的动物实验证明,体质的过敏反应亢进是由摄入含α-亚麻酸食物的缺乏引起的
六、抑制衰老:随着年龄的增加,体内各种自由基的数目不断增多,而(GSH-Px)及(SOD)数量逐渐降低,活性逐渐减弱,因此自由基代谢产物丙二醛(MDA)的生成增多,使细胞受到损伤,组织器官功能下降。服用α-亚麻酸后,GSH-Px 及 SOD 活性增加,MDA 的生成减少,揭示α-亚麻酸有作用。
七、增强智力:健全的大脑绝对不可缺少脂肪酸,特别是α-亚麻酸,脂肪酸为大脑提供所需的能量,人脑之所以能从事高度复杂的工作,离不开高质量的脂肪酸。18个的α -亚麻酸可以进一步延伸碳链,增加个数,生成 EPA 和 DHA。DHA 在脑神经细胞中大量集存,是大脑形成和智商开发的必需营养素。
随着研究的深入,α亚麻酸与健康及疾病的关系,已引起了国内外学者瞩目和高度重视。尽管α—亚麻酸资源数量少,能够摄取到的食物种类也少,但它们的生理活性却是人体不可缺少的。综合全球医学和营养学的研究结果,α-亚麻酸有以下基本功效:
1、调节血脂作用
血脂异常严重威胁人类健康和生命,它是动脉粥样硬化病灶形成和进展的重要危险因素,已证实调脂药物可以延缓动脉粥样硬化事件(如心肌梗死和卒中)的发生。很多实验得出α亚麻酸具有降低(TC)、甘油三酯(TG)、低密度脂蛋白和极低密度蛋白,升高血清高密度脂蛋白的作用。 在α—亚麻酸降低血清胆固醇的机理中,除增加胆固醇排泄外,抑制内源性胆固醇合成也很重要。HMG-CoA是胆固醇合成的主要限速酶,α-亚麻酸抑制其活性而减少胆固醇的合成。Tield等发现,摄入α—亚麻酸能使家兔肝HMG-CoA还原酶活性降低,同时使ACAT活性升高。α—亚麻酸对脂肪合成酶系的抑制和加强线粒体中的β-氧化,使甘油三酯的合成减少而消耗增加。α—亚麻酸在降低家兔血脂的同时无肝脏积累脂质的现象,而属于ω—6PUFA的亚油酸和γ—亚麻酸虽然也有降低血脂的作用,但其主要是促使脂质由血液向肝脏转移而降低血脂,导致。 同时有论文报道深海鱼油中ω—PUFA的不同类型而出现不同的降脂作用,EPA主要在降低甘油三酯方面起作用,DHA在降低胆固醇方面起作用,作为它们母体的α-亚麻酸在调节血脂时可以起到全面降脂、排脂的作用。
2、预防心肌梗塞和脑梗塞
从发生机理来看,血栓主要有两种,一是脂质栓子,二是血液凝固。大多数的抗血栓药物只是对其中的某一因素产生作用,而α—亚麻酸的抗血栓作用则是完全的、全面的。 在超高倍的电子显微镜下,通过对末梢血的观察,可以明显看到胆固醇的结晶和乳糜颗粒,有的患者还出现大块的斑块,这些胆固醇结晶和脂质斑块黏附在血管内壁,即可形成脂质血栓,高脂血症是形成脂质血栓的主要原因。游离的胆固醇和甘油三酯不能溶解在血液中,其在血液中以结晶或颗粒形式存在,在血管内壁出现损伤的情况下,这些脂质物质即可黏附在血管内壁,经过长期的积累,形成大的斑块,并引起动脉粥样硬性化。α亚麻酸的调节血脂功能可以降低胆固醇、甘油三酯、LDL、VLDL、升高HDL,发挥抗血栓的作用。服用1.2g/d的α—亚麻酸120天,显微镜下胆固醇结晶密度可以非常明显地减少,大块的脂质斑块可以消失。
血小板聚集是血液凝固过程中最重要的环节,血栓素TXA2可以引起血小板的聚集,而PGI2则起拮抗作用,花生四烯酸AA在环加氧酶的作用下生成PGI2,同时也生成,EPA与AA竞争环加氧酶生成PGI3和TXA3,减少了PGI2和TXA2的生成,PGI3和PGI2有相当的拮抗TXA2的活性,但TXA3并无血小板聚集的活性,故可以抑制TXA2的活性从而防止血栓的发生,预防心肌梗塞和脑梗塞。同时ω—3PUFA能够稳定心肌膜电位、降低室性心律不齐和敏感性,可以防止心律失常的发生,尤其是可以防止由缺血引起致死性心率失常。
降低血黏度、增加血液携氧量
在多数情况下,冠心病和脑缺血都是由血栓引起的,但血液黏度也是一个不可忽视的因素。部分冠心病和脑缺血患者都没有明显的动脉栓塞,其中的原因就是血黏度的升高,血液携氧量下降而导致心肌和大脑供血不足及外周循环障碍,表现出心悸、胸闷、头晕、失眠、记忆力下降及四肢麻木等症状。高黏血症可以有两个方面的意义:
一是体现在血液的流动性方面,即是血液的流变学意义,利用黏度计可以测得。血液流动性的下降使血液在血管中的流动变慢,导致组织缺血,同时加重心脏的负担。
二是体现在红血球的聚集方面,即是红细胞的黏连,在高倍显微镜下观察可见红细胞呈重叠状,此状态下的红细胞所能携氧的总表面积减少,携氧量减少,组织同样出现缺氧症状,血液中各种溶质的增加使血液的黏滞性增加流动性下降,其溶质主要为一些蛋白质,如糖蛋白、脂蛋白、纤维蛋白原、胶原蛋白等;而红细胞膜成份的改变使膜表面的带电量减少,细胞之间的斥力不足以使细胞分开而出现黏连。
对于血黏度,并无针对性的药物,在这方面,α亚麻酸有其独特的作用。α—亚麻酸可以调节糖、脂肪和蛋白质的代谢,降低血液中可溶性蛋白质的水平,增加血液的流动性,在补充α—亚麻酸90天左右即可见到效果。α—亚麻酸在细胞膜磷脂中的比例增加,膜的流动性增加,同时细胞膜表面所带电量增加,细胞之间黏连可以得到明显的改善,黏连细胞一般在补充α—亚麻酸30天后明显分散。高黏血症患者以1.5g/d补充α—亚麻酸90天,各项指标可恢复正常,同时心悸、胸闷、头晕、失眠、记忆力下降及四肢麻木等症状得到明显改善,有效率在90%以上。
对胰岛素抵抗和糖尿病的作用
α亚麻酸可促进胰岛素β—细胞分泌胰岛素及使胰岛素在血液中维持稳定,可降低靶细胞对胰岛素的抵抗,提高细胞膜上胰岛素受体的敏感度,减少胰岛素的拮抗性。 患糖尿病时,肌体内的脂肪分解加速,脂类代谢紊乱引起血脂增高,导致血管硬化、高血脂症、脂肪肝和高血压等并发症。此外,脂肪过度分解,会产生酮体,如酮体超过机体的利用限度,大量在体内堆积,就会产生酮症酸中毒。α—亚麻酸在人体内可调节脂类代谢,抑制并发症,降低酸、酮中毒的机率。同时α—亚麻酸对人体各器官及神经系统的保护作用和增强作用对糖尿病人是大有裨益的。
α—亚麻酸及其代谢物EPA、DHA能使高血压患者的血压降低,每天服用1.2克可使收缩压、舒张压和平均动脉压降低10mmHg,而正常血压几乎不受影响。ω—3PUFA降血压的机理被认为是内源性血管活性物质对血管的反应,如前列腺环素PGI3的舒张血管作用,刺激内皮细胞释放NO,同时使α—亚麻酸能使血浆中的中性脂肪(胆固醇、甘油三脂)含量下降。
α亚麻酸在减少肥胖病人体重方面不同于任何其它药物。其主要通过以下两个途径来实现:一是增加代谢率;二是抑制甘油三脂的合成,增加体内各种脂质的排泄。但要达到减肥效果,服用量要相对增加。
抑制过敏反应
现代人,花粉过敏、食物性过敏、特异性湿疹和哮喘等发病人数不断地增加,造成这种情况的可能原因有两点,一是人们能够接触到的过敏源增加;二是身体反应性亢进。在过敏发生过程中,体内的肥大细胞、中性白细胞起着重要作用。过敏原一进入人体,就与肥大细胞结合,肥大细胞受到刺激于是就释放出组胺和白三烯(LT4)。另外,由中性白细胞释放出血小板活化因子。这些活性物质导致了过敏的各种症状,如呼吸困难、分泌物增多、鼻炎等。
食物中不同种类必须脂肪酸的比例变化可引起身体过敏反应亢进。因为由ω—6PUFA的花生四烯酸产生的4系白三烯LT4(LTB4、LTC4、LTD4、LTE4),而由α亚麻酸产生的是5系白三烯LT5(LTB5、LTC5、LTD5、LTE5)。LTB4能强烈吸引中性粒细胞、、单核细胞,增加血管壁通透性的活性,而LT5在这方面的生理活性只有LT4的几十分之一到几百分之一。给予大鼠高α—亚麻酸和高亚油酸(红花油)的饲料,两代饲养,腹腔注入糖原,集聚中性白细胞,并进行刺激,使其释放LT类物质,然后进行定量。释放的LT总量无大的差异,但活性强的B4型和活性弱的B5型的比例有很大的差异。
随着抗生素和其它抗菌素的应用,病原性炎症对人体健康的影响日趋减少,而一些非病原性、非致命性的慢性炎症给人类健康带来新的威胁,严重影响了人们的生活质量,如风湿、、慢性鼻炎、等,解热镇痛、及激素类抗炎药对这一类疾病只能起到对症治疗作用。即减少各种炎症介质的合成,但同时对机体产生严重的副作用。α—亚麻酸对各种炎症介质和细胞因子有抑制作用,并且不会带来不良反应,给这一类疾病的治疗带来新思路。
α—亚麻酸对脂类炎症介质的作用 炎症发生时,细胞膜上的花生四烯酸AA在环氧化酶和脂氧化酶的作用下产生一系列具有生理活性的脂类介质,主要包括前列腺素PGE2和四系白三烯LT4,引起炎症反应。α—亚麻酸的代谢产物EPA是AA的同类物,通过竞争同一种酶系,产生前列腺素PGE3和五系白三烯LT5抑制PGE2和LT4的产生,与PGE2和LT4相比,PGE3和LT5对炎症活动几乎没有作用,因此,体内α—亚麻酸有良好的抗炎作用。 ·
α—亚麻酸对肽类炎症介质(细胞因子)的作用 IL-Iβ和TNF-α是重要的炎症介质,可以刺激胶原蛋白酶的产生、介导白细胞向内皮细胞黏附而使和巨噬细胞活化导致炎症反应。α—亚麻酸明显可以抑制细胞因子的产生,其机理尚不清楚。服用56%纯度的α—亚麻酸4周,体内白细胞EPA的浓度提高,IL-Iβ和TNF-α的产生可以被抑制大约30%。
从α—亚麻酸对炎症介质的抑制可以判断其对炎症疾病具有治疗作用,额外补充α—亚麻酸对许多炎症疾病有预防和治疗作用,如、特异性皮炎,特别是前列腺炎,因为一般水溶性抗炎药物很难通过包围前列腺的脂质膜结构而发挥作用,但对本身作为脂肪酸的α—亚麻酸来说,很容易通过膜质结构进入前列腺内部发挥抗炎作用。日本已经开发α—亚麻酸药物制剂,用来预防气喘、过敏性疾病等。
如前所述,视网膜中视细胞外节含DHA特别多。有人报道,如果DHA缺乏,视力就下降,视网膜反射能恢复时间就延长。因为视网膜一碰到光,就起化学反应,由此而产生电位变化,再通过神经传到脑。分别用Ω—6系列红花油、α—亚麻酸对大鼠进行两代饲养,然后给予强度不同的光,使产生电位变化,来比较细胞膜电位图α波和β波的大小(振幅),以确定视网膜反射能。结果表明,振幅的大小与α—亚麻酸的含量相对应,即以红花油、对照组、α—亚麻酸的顺序升高。用猴子实验,亦证明α—亚麻酸缺乏,则视力降低。
α亚麻酸而来的二十二碳六烯酸(DHA)在脑神经和视网膜中大量存在,同时,从胎儿到哺乳这个期间脑的发育是非常重要的。到离乳时脑细胞分裂大部分已结束,以后神经细胞数也不怎么增加,所以妊娠期到哺乳期的α—亚麻酸补给是非常必要的。 此外,α—亚麻酸还有抗癌、抗衰老、抗抑郁、预防老年性痴呆等方面的作用,在维持人类正常生长发育、维护皮肤正常状态是必不可少的。
包括α—亚麻酸在内的ω—3PUFA在西方国家已作为药品大规模应用于临床,用于心血管疾病、糖尿病、肥胖、肿瘤、炎症、抑郁等疾病的预防和治疗,有的国家还以法律的形式规定在某些特定的食品中必须添加α—亚麻酸,否则不得销售。相信随着对α—亚麻酸研究的不断深入,α—亚麻酸应该有更加广阔的应用前景。传统的油脂根据其来源分为植物油和植物油,植物油根据其碘价进一步分为干性、半干性、非干性油,油脂按传统方法分为十类,其中有六类是食用植物油,一类是其轭脂肪酸型油脂,一类是羟基脂肪酸型油脂,传统上主要植物油的脂肪酸组成主要有:月桂酸(椰子油,棕榈仁油、巴巴苏油),棕榈酸(棕榈油),油酸(橄榄油、低芥酸菜籽油、花生油、高油酸葵花籽油、红花油),亚油酸(中等含量,玉米油、棉籽油、芝麻油、大豆油),油酸含量(高含量,葵花籽油、),芥酸(菜籽油)。按油脂的脂肪酸组成分类的方法更适用于基因改良的油脂,这种油脂的脂肪酸组成可能被改变,例如普通葵花籽油与高油酸葵花籽油。
国内的观点
目前国内认为:α -亚麻酸是我们地球人的营养短板,主要是食物来源于比较少,食物的精加工破坏了α -亚麻酸,另外就是α -亚麻酸本身生物活性高,易氧化,保存的技术要求高。α -亚麻酸是人们要专项补充的一种基础营养素,一种必需营养素,一种严重普遍缺乏、急需补充的营养素。是人类的营养短板。由于α—亚麻酸的代谢产物具有显著地抗凝血等作用,因此对血小板少或凝血机制有问题的、有出血倾向的人、血友病人应谨慎服用或在医生指导下合理摄入。
新手上路我有疑问投诉建议参考资料 查看}

我要回帖

更多关于 麻风病是什么 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信