微卫星重组酶聚合酶扩增技术疾病是怎样的一组疾病?

微卫星引物扩增
微卫星引物扩增
基于1个网页-
microsatellite primer-pcr amplification
微卫星引物扩增
基于1个网页-
尤其是微卫星引物PCR 扩增明确了桃蚜寄主生物型和体色生物型的遗传分化关系。
Particularly the method of microsatellite primer-PCR amplification makes clear the relationship of genetic diversity.
本实验所采用的11对微卫星引物总共扩增出了101条多态性谱带,平均每对引物扩增出7.21条多态性谱带。
A total of 101 polymorphic bands with an average of 7.21 bands per primer pair were generated by 11 microsatellite primer pairs.
微卫星引物(SSR)扩增出的杂交种带型均表现为父母本条带的“互补型”,SSR标记是杂种真实性鉴定的理想分子标记。
The amplification bends of hybrid with SSR markes were complementary with that of parents. SSR technique is the reasonable method for identification of hybrid.
$firstVoiceSent
- 来自原声例句
请问您想要如何调整此模块?
感谢您的反馈,我们会尽快进行适当修改!
请问您想要如何调整此模块?
感谢您的反馈,我们会尽快进行适当修改!微卫星位点筛选方法综述_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
微卫星位点筛选方法综述
上传于||暂无简介
阅读已结束,如果下载本文需要使用2下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩7页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢什么是生物研究中的微卫星序列?
微卫星(microsatellite)也叫短串联重复序列(short tandem repeat,STR) 或简单重复序列(simple sequence repeats),是由几个(多为2~4个)碱基对作为核心单位,串联重复形成的一类DNA序列,由于核心单位重复数目的变化,构成了STR基因座的遗传多态性.微卫星分子标记已被广泛应用于构建基因图谱、种质鉴定、亲缘关系分析、分子标记与经济性状关系分析及遗传疾病诊断.实验基本内容1.微卫星试验设计,包括扩增子选择和引物设计2.试验条件的优化和验证3.采用确认条件对基因组DNA进行PCR扩增4.对PCR扩增产物进行电泳5.片段大小的精确分析和等位基因读出实验步骤 1.取样本(血液或组织等);2.确定STR位点,设计普通PCR引物序列并扩增,琼脂糖电泳检测结果;3.设计合成荧光标记引物PCR扩增,产物通过测序仪电泳检测,获得扩增片段大小的数据;4.测序仪读出数据,得到片段大小信息.
为您推荐:
其他类似问题
扫描下载二维码高级医学遗传学思考题2014-博泰典藏网
典藏文档 篇篇精品
高级医学遗传学思考题2014
导读:高级医学遗传学思考题,1、简述FISH技术的基本原理以及其在医学研究中的应用,用于未克隆基因或遗传标记及染色体畸变的研究在基因定性、定量、,2、怎样理解在肿瘤发生中环境与遗传因素相互作用?,它受遗传因素和环境因素的双重影响,遗传基因按“中心法则”配对复制“,可用于基因定位、DNA测序、物理图谱和遗传图谱的构建等,染色体检测被广泛用于动、植物及人类的细胞遗传学研究,人类遗传性疾病的基因缺陷,高级
高级医学遗传学思考题
(2014.12)
1、 简述FISH技术的基本原理以及其在医学研究中的应用。
答:如果被检测的染色体或DNA纤维切片上的靶DNA与所用的核
酸探针是同源互补的,二者经变性-退火-复性,即可形成靶DNA与
核酸探针的杂交体。将核酸探针的某一种核苷酸标记上报告分子如
生物素、地高辛,可利用该报告分子与荧光素标记的特异亲和素之
间的免疫化学反应,经荧光检测体系在镜下对待测DNA进行定性、
定量或相对定位分析
应用:该技术不但可用于已知基因或序列的染色体定位而且也可
用于未克隆基因或遗传标记及染色体畸变的研究在基因定性、定量、
整合、表达等方面的研究中颇具优势。
2、 怎样理解在肿瘤发生中环境与遗传因素相互作用?
答:异常基因的出现是细胞癌变的基础;各种致癌因子是启动异
基因突变的诱因。异常基因的出现是自我复制错误的结果,它受遗传因素和环境因素的双重影响,一方面,遗传基因按“中心法则”配对复制“;另一方面,在复制过程中要受到时时发生变化的环境因素的影响而发生变异,导致配对不准确,形成异常基因。异常基因不稳定,一方面在修复系统控制下向正常基因恢复,环境改变有利于生存时基因可能恢复正常;如果在这种情况下环境仍然不适合基因复制,在遇到致突变因子入侵的情况下,基因则无法恢复正常, 而是继续以异常基因为模板,复制种种的异常的基因,积累到一定的程度,整个DNA就会出现表型的变异。
3、微卫星扩增疾病是怎样的一组疾病?请概括这些疾病的可能病理
4、列举几种检测核苷酸突变的方法。试述对已报道的某基因突变位点
的检测流程。
PCR-SSCP法 PCR-SSCP法是在非这性聚丙烯酰胺凝胶上,短的单链DNA和RNA分子依其大街基序列不同而形成不同构象,一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。其基本原理为单链DNA在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的二级结构而出刺同的迁移率。由于该法简单快速,因而被广泛用于未知基因突变的检测。用PCR-SSCP法检测小于200bp的PCR产物时,突变检出率可达70%-95%,片段大于400bp时,检出率仅为50%左右,该法可能会存在1%的假阳性率。应用PCR-SSCP法应注意电泳的最佳条件,一般突变类型对检测的灵敏度无大的影响,同时该法不能测定突变的准确位点,还需通过序列分析来确定。Sarkar等认为对于大于200bp的片段,用其RNA分子来做SSCP会提高其录敏度。应用PCR-SSCP检测点突变已见报道于人类大部分的肿瘤组织或细胞,如乳腺癌、食管癌、肺癌、胃癌、肝癌、胰腺癌等。检测的基因包括多种癌基因及抑癌基因,也是检测抑癌基因p53突变最常用的方法,仅检测第5-8外显子即可发现85%以上的p53基因突变。由于该法简便快速,特别适合大样本基因突变研究的筛选工作。
异源双链分析法(HA) HA法直接在变性凝胶上分离杂交的突变型一野生型DNA双链。由于突变和野生型DNA形成的异源杂合双链DNA在其错配处会形成一突起,在非变性凝胶中电泳时,会产生与相应的同源双DNA不同的迁移率。该法与SSCP相似,所不同的是SSCP分离的是单链DNA,HA法分离的是双链DNA,也只适合于小片段的分析。但HA对一些不能用SSCP检出的突变有互补作用,两者结合使用,可使突变检出率提高到近100%。
突变体富集PCR法(mutant-enriched PCR)本法的基本原理是利用ras基因家族某个密码子部位存在已知的限制性内切酶位点,如K-ras基因第12密码子的BstNI位点,第13密古巴子有BgⅠⅡ位点。用链续二次的巢式PCR来扩增包括K-ras第12、13密码子的DNA片段,在两次扩增反应之间用相应的内切酶消化扩增的DNA片段,野生型因被酶切而不能进入第二次PCR扩增,而突变型则能完整进入第二次PCR扩增并得到产物的富集。
变性梯度凝胶电泳法(denaturing gradinent electrophoresis,DGGE) DGGE法分析PCR产物,如果突变发生在最先解链的DNA区域,检出率可达100%,检测片段可达1kb,最适围为100bp-500bp。基本原理基于当双链DNA在变性梯度凝胶中进行到与DNA变性湿度一致的凝胶位置时,DNA发生部分解链,电泳适移率下降,当解链的DNA链中有一个碱基改变时,会在不同的时间发生解链,因影响电泳速度变化的程
而被分离。由于本法是利用温度和梯度凝胶迁移率来检测,需要一套专用的电泳装置,合成的PCR引物最好在5`末端加一段40bp-50bp的GC夹,以利于检测发生于高熔点区的突变。在DGGE的基础上,又发展了用湿度梯度代替化学变性剂的TGGE法(温度梯度凝胶电泳temperature gradient gelelectrophoresis,TGGE)。DGGE和TGGE均有商品化的电泳装置,该法一经建立,操作也较简便,适合于大样本的检测筛选。
化学切割错配法(chemical cleavage of mismatch,CCM)CCM为在Maxam-Gilbert测序法的基础上发展的一项检测突变的技术,其检测突变的准确性可与DNA测序相仿。其基本原理为将待测含DNA片段与相应的野生型DNA片段或DNA和RNA片段混俣变性杂交,在异源杂合的双链核酸分子中,错配的C能被羟胺或哌啶切割,错配的T能被四氧化饿切割,经变性凝胶电泳即可确定是否存在突变。该法检出率很高,也是检片段最长的方法,已有报功检测了1.7kb片段,如果同时对正、反义链进行分析,检出率可达100%。应用荧光检测系统可增强敏感度,可检测到10个细胞中的1个突变细胞。该法中的化学试剂有毒,又发展了碳二亚胺检测法(catodiimide,CDI),CDI为无毒物质,也可检测大片段DNA的点突变。
等位基因特异性寡核苷酸分析法(allele-specific oligonucleotide,ASO) ASO为一种以杂交为基础对已知突变的检测技术。以PCR和ASO相结合,设计一段20bp左右的寡核苷酸片段,其中包含了发生突变的部位,以此为探针,与固定在膜上的经PCR拉增的样品DNA杂交。可以用各种突变类型的寡核苷酸探针,同时以野生型探针为对照,如出现阳性杂交带,则表运河样品中存在与该ASO探针相应的点突变,ASO需严格控制杂交条件和设置标准对照避免假阳性和假阴性。目前已有商品化的检测盒检测部分癌基因ASO突变。
DNA芯片技术(DNA chip)DNA芯片技术是90年代后发展的一项DNA分析新技术,它集合了集成电路计算机、激光共聚焦扫描、荧光标记探针和DNA合成等先进技术。可用于基因定位、DNA测序、物理图谱和遗传图谱的构建等。在基因突变检测方面DNA芯片也有广阔的前景,其基本原理为将许多已知序列的寡核苷酸DNA排列在1块集成电路板上,彼此之间重叠1个碱基,并覆盖全部所需检测的基因,将荧光标记的正常DNA和突变DNA发别与2块DNA芯片杂交,由于至少存在1个碱基的差异,正常和突变的DNA将会得到不同的杂交图谱,经过共聚集显微镜分别检测两种DNA分子产生的荧光信号,即可确定是否存在突变,该方法快速简单、片动化程度高,具有很大的发展潜力,将在基因突变检测中心发挥非常重要的作用。
连接酶链反应(ligase chain reaction,LCR) 与其他核酸扩增技术比较,其最大特点为可准确区分基因序列中单个基因突变,由Landegree于1988年首次应用于镰刀奖细胞贫血的分子诊断。LCR是以DNA连接酶将某一DNA链的5`-磷酸与另一相邻链3`-羟基连接为基础,应用两对互补的引物,双链DNA经加热变性后,两对引物分别与模板复性,若完全互补,则在连接酶的作用下,使相邻两引物的5`-磷酸与3`-羟基形成磷酸二酯二酯键而连接,前一次的连接产物又作为下一次循环反应的模板,如果配对的碱基存在突变则不能连接和扩增。LCR产物检测最初是通过这32p标记上游引物3`未端,经变性凝胶电泳分离后放射自显影加以鉴定,其检测敏感性达到200个靶分子。也可设计1个横跨两引物的检测探针,用它与LCR产物进行杂交检测。近年有应用荧光素、地高辛等非核素标记方法。Batt在1994年发展了一种更为简的方法,好微孔板夹心杂交法。由于L
CR的快速、特蛋和敏感的特性,以及能检测单个碱基突变的能力,因此被应用于肿瘤基因突变的分子诊断,并与PCR结合用以提高其敏感性。
等位基因特异性扩增法(Allele-specific amplification,ASA)ASA于1989年建立,是PCR技术应用的发展,也称扩增阻碍突变系统(amplification refractory mutation system,ARMS)、等位基因特性PCR(allele-specific PCR,ASPCR)等,用于对已知突变基因进行检测。该法通过设计两个5`端引物,一个与正常DNA互补,一个与突变DNA互补,对于纯合性突变,分别加入这两种引物及3`端引物进行两个平行PCR,吸有与突变DNA完互补的引物才可延伸并得到PCR扩增产物。如果错配位于引物的3`端则导致PCR不能延伸,则称为ARMS。ARMS和ASPCR借鉴多重PCR原理,可在同一系统中同时检测两种或多种等位基因突变位点。ASA法的检出率依赖于反应条件的优化和可能发生的引物与靶DNA有氏配时错配延伸,特别是当错配碱基为G:T时,这时可通过调整实验条件如引物靶DNA,Taq DNA聚合酶的浓度等来得高瓜在特异性。在反应体系中加入甲酰胺也可减少非特异性扩增。还可通过在引物3`端的第二个碱基引入一个错配碱基,使之与模板之间形成双重错配以阻止错误延伸。RNA酶A切割法(RNase
A cleavage)在一定条件下,氨基源双链核酸分子RNA:RNA或RNA:DNA中的错配碱基可被RNaseA切割,切割产物可通过变性凝胶电泳分离。当RNA探针上错配的碱基为嘌呤时,RNaseA在错配处的切割效率很低,甚至不切割,而当错配碱基为嘧啶时,则其切割效率较高。故如果仅分析被检DNA的一个条链,突变检出率只有30%,如同时分析正义和反义二条链,检出率可达70%。该法需要制备RNA探针,增加了操作的复杂性,但可用于1-2kb的大片段进行检测,并能确定突变位点。于这些优越性,它仍被作为一种经典方法用于对未知突变进行分析。
染色体原位杂交(In situ hybridization of chromosome)染色体发现距今已有150多年的历史,染色体检测被广泛用于动、植物及人类的细胞遗传学研究,随着染色体分技术和分子生物学技术的发展。染色体研究范围也不断扩大,特别是用于肿瘤分子诊断。肿瘤细胞的染色体变化是一非常普遍的现象,可分为原发和继发两类。在肿瘤形成的生物学基础方面,原发性的染色体变化与引起肿瘤的直接原因有关,肿瘤细胞中可以发现各种形式的染色体畸变,如缺失、重复、易位、重排、单体断裂及核内复制等;继发性变化主要是肿瘤细胞核型的改变。染色体的检测对于肿瘤的诊断、鉴别诊断、生物学行为判别等方面都重要意义。染色体的检测方法进展很快,检测的精确率也不断提高,这里主要介绍荧光原位杂交和PRINS法。
荧光原位杂交技术(fluorescent in situ hybridiaation,FISH)创建于1986年。1969年Gall和Pardue首先应用核素标记核苷酸制备探针,通过放射自显影检测杂交信号。应用核素标记的探针其敏感性可以检测到中期染色体上几百
碱基的单拷贝靶核苷酸序列,敏感性虽高,但定位不够精确。FISH具有探针稳定、操作安全,可快速、多色显示多个不同探针的杂交信号等优点。FISH的灵敏感与探针标记方法和检测仪器性能有关,探针标记时掺入的修饰核苷酸比例直接影响杂交信号强度。FISH探针一般采用随机引物法或切口翻译法,如将PCR技术引入FISH探针标记,可使其灵敏度提高到0.25kb。应用慢扫描CCD配合影像处理理软件,增强信噪比,有利于检测微弱信号,如应用TSA系统(tyramide signal amplification)能将杂交信号再放大1000倍,可用于单拷贝基因的定位。FISH分辨率大约为1-3Mb,如果应用强变性剂处理染色体,让DNA分子从蛋白质中分离出来,使双DNA完全伸展并粘附在玻片上,经引处理后,分辨率可达1-2kb。还可采用对分裂中期染色体进行显微解剖(microdissect)法以提高分辨率。FISH的另一个特点是可以联合庆用地高辛、生物素等多种标记系统, 在一次杂交中可检测多种探针在染色体上的位置及探针间的相互关系,即多色FISH或多靶FISH。FISH技术已被广泛应用于肿瘤研究中的基因扩增、易位重排及缺失等的检测,在肿瘤诊断和鉴别诊断、预后和治疗监控等方面都有重要意义。 DNA序列分析(DNA sequencing) 应用各种突变检测技术检测到的基因突变,最后都需用序列分析才能确定突变类型及突变位置,其效率可以达到100%。现在的测序方法已与经典的方法有了很大的不同,其基本原理虽仍是双脱氧终止法,但自动化程度大为提高,操作更简便,测序时间也大大缩短。随着PCR技术与测序联合使用,不需经过M13亚克隆步骤,故称为直接测序法(direct sequencing,DS)。DS法测序的模板主主要来源于PCR,应用不对称PCR(asymmetric PCR)和基因组扩增转录同步测序法(genomic amplification with transcript sequencing,GAWTS)等,使单链产物大大增加。近年来,PCR循环测序法的建立,使模板扩增与同步进行,引物用四种不同前颜色的荧光标记,使每个样品的四个测序反应可在一个反应管和一个泳道内进行,大大提高了测邓的自动化程度。目前PE公司推同出的DNA自动测序仪已发展到96泳道,并仍在不断改进。这些高度自动化的测序方法是经较理想的基因突变分析技术,但其昂贵的费用其使用范围,所以对一些小样本或为了某些特定目的的样本分析,仍进行经典的手工测序
5、举例简述基因诊断的主要策略与方法。
? 基因诊断就是利用DNA重组技术直接从DNA水平上检测
人类遗传性疾病的基因缺陷,因此,这种诊断方法又称为DNA分析法。 ? 它和传统的诊断方法的主要差别在于直接从基因型推断表型,即越过基因产物直接检查基因的结构而作出产前或发病前的早期诊断。
包含总结汇报、行业论文、外语学习、自然科学、旅游景点、医药卫生、资格考试、高中教育、经管营销以及高级医学遗传学思考题2014等内容。本文共2页
相关内容搜索}

我要回帖

更多关于 单细胞全基因组扩增 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信