盆部ct影响盆腔积液和卵巢囊肿功能吗

---08月26日 00:22 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
腹盆部囊性及囊肿性病变的CT诊断
下载积分:999
内容提示:腹盆部囊性及囊肿性病变的CT诊断
文档格式:PDF|
浏览次数:4|
上传日期: 11:36:59|
文档星级:
该用户还上传了这些文档
腹盆部囊性及囊肿性病变的CT诊断
官方公共微信CT辐射的影响有哪些?
CT辐射的影响有哪些?
1895年,德国菲试堡物理研究所所长兼物理学教授威廉·孔拉德·伦琴把新发现的电磁波命名为X光,这个“X”是无法了解的意思。世人为了表示对发明者的敬意,亦称之为“琴伦线”。X光是一种有能量的电磁波或辐射。当高速移动的电子撞击任何形态的物质时,X光便有可能发生。X光具有穿透性,对不同密度的物质有不同的穿透能力。在医学上X光用来投射人体器官及骨骼形成影象,用来辅助诊断。 1894年,实验物理学家勒纳德在放电管的玻璃壁上开了一个薄铝窗,成功地使阴极射线射出管外。 1895年,物理学家伦琴在探索阴极射线本性的研究中,意外发现了X光。X光的发现,不仅揭开了物理学革命的序幕,也给医疗保健事业带来了新的希望。伦琴因此成为第一个诺贝尔物理学奖得主。 x光是穿透性很强的射线,一种高能量光波粒子,所以一般物体都挡不住,射线要被阻挡,关键由射线强度、频率、阻挡物质与射线作用程度、阻挡物质厚度、阻挡物质大小共同决定。一般情况下,常见的X光(医院用)大约3~5cm的铅块就可以阻挡了。但是也会在背景屏上会显示阻挡物的阴影形状,就好像日食,虽挡住了太阳光,却留下了阴影。核磁共振(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。 MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。超声是超过正常人耳所能听到的声波,频率在20000赫兹以上。运用超声波的物理特性和人体器官组织声学性质上的差异,以波形、曲线或图像的形式显示和记录出来,以进行疾病诊断的方法,就是超声检查。 最早使用的是A型超声,它为振幅调制型,是一种超声示波诊断,按不同的反射波判断疾病,诊断能力有限。后来出现了B型超声,为辉度调制型,是超声显像诊断类型,能直接显示二维空间图像,故又称二维超声,能直接观察到器官的影像,诊断能力大大提高。之后,又出现了D型超声,也称多普勒型,是超声频移诊断法,利用多普勒效应,显示血液流动和脏器活动的信号。此外,还相继出现了M型、C型和T型超声。近年,又生产出彩色B超,比B超分辨能力更强。 超声技术主要用于体内液性、实质性病变的诊断,对于胃、肺和胃肠道的病变则难以进行分辨。超声检查对发现病变、确定病变的位置和大小比较容易,确定病变是否为液性或含气性也较可靠,也尚能分辨肿瘤的良性与恶性。超声对检查心脏、腹部和盆腔器官包括妊娠的检查应用较多,如对肝血管瘤、肝脓肿、肝硬化,胆囊结石及肿瘤,脾和胰腺的疾病以及腹水诊断较为可靠;对肾脏、膀胱、前列腺、肾上腺、子宫、卵巢等疾病的诊断比对甲状腺、乳腺疾病的检查诊断准确;对妊娠的诊断,包括胎位、胎盘定位、多胎、死胎、胎儿畸形及葡萄胎判定等,都有相当高的价值。由于超声诊断仪不似CT昂贵,收费标准较低,因此,在临床应用较普遍,检查前的准备也很简单,如做肝、胆、胰、脾检查只需在检查当天禁食和禁水;检查妇科、前列腺则只需憋足小便即可。 什么是CT 全称:computed tomography CT是一种功能齐全的病情探测仪器,它是电子计算机X射线断层扫描技术简称。 CT的工作程序是这样的:它根据人体不同组织对X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。 CT的发明 自从X射线发现后,医学上就开始用它来探测人体疾病。但是,由于人体内有些器官对X线的吸收差别极小,因此X射线对那些前后重叠的组织的病变就难以发现。于是,美国与英国的科学家开始了寻找一种新的东西来弥补用X线技术检查人体病变的不足。1963年,美国物理学家科马克发现人体不同的组织对X线的透过率有所不同,在研究中还得出了一些有关的计算公式,这些公式为后来CT的应用奠定了理论基础。1967年,英国电子工种师亨斯费尔德在并不知道科马克研究成果的情况下,也开始了研制一种新技术的工作。他首先研究了模式的识别,然后制作了一台能加强X射线放射源的简单的扫描装置,即后来的CT,用于对人的头部进行实验性扫描测量。后来,他又用这种装置去测量全身,获得了同样的效果。1971年9月,亨斯费尔德又与一位神经放射学家合作,在伦敦郊外一家医院安装了他设计制造的这种装置,开始了头部检查。10月4日,医院用它检查了第一个病人。患者在完全清醒的情况下朝天仰卧,X线管装在患者的上方,绕检查部位转动,同时在患者下方装一计数器,使人体各部位对X线吸收的多少反映在计数器上,再经过电子计算机的处理,使人体各部位的图像从荧屏上显示出来。这次试验非常成功。1972年4月,亨斯费尔德在英国放射学年会上首次公布了这一结果,正式宣告了CT的诞生。这一消息引起科技界的极大震动,CT的研制成功被誉为自伦琴发现X射线以后,放射诊断学上最重要的成就。因此,亨斯费尔德和科马克共同获取1979年诺贝尔生理学或医学奖。而今,CT已广泛运用于医疗诊断上。 CT的成像基本原理 CT是用X线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器(analog/digital converter)转为数字,输入计算机处理。图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素(voxel),见图1-2-1。扫描所得信息经计算而获得每个体素的X线衰减系数或吸收系数,再排列成矩阵,即数字矩阵(digital matrix),数字矩阵可存贮于磁盘或光盘中。经数字/模拟转换器(digital/analog converter)把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即象素(pixel),并按矩阵排列,即构成CT图像。所以,CT图像是重建图像。每个体素的X线吸收系数可以通过不同的数学方法算出。 CT设备 CT设备主要有以下三部分:①扫描部分由X线管、探测器和扫描架组成;②计算机系统,将扫描收集到的信息数据进行贮存运算;③图像显示和存储系统,将经计算机处理、重建的图像显示在电视屏上或用多幅照相机或激光照相机将图像摄下。探测器从原始的1个发展到现在的多达4800个。扫描方式也从平移/旋转、旋转/旋转、旋转/固定,发展到新近开发的螺旋CT扫描(spiral CT scan)。计算机容量大、运算快,可达到立即重建图像。由于扫描时间短,可避免运动产生的伪影,例如,呼吸运动的干扰,可提高图像质量;层面是连续的,所以不致于漏掉病变,而且可行三维重建,注射造影剂作血管造影可得CT血管造影(Ct angiography,CTA)。超高速CT扫描所用扫描方式与前者完全不同。扫描时间可短到40ms以下,每秒可获得多帧图像。由于扫描时间很短,可摄得电影图像,能避免运动所造成的伪影,因此,适用于心血管造影检查以及小儿和急性创伤等不能很好的合作的患者检查。 CT图像特点 CT图像是由一定数目由黑到白不同灰度的象素按矩阵排列所构成。这些象素反映的是相应体素的X线吸收系数。不同CT装置所得图像的象素大小及数目不同。大小可以是1.0×1.0mm,0.5×0.5mm不等;数目可以是256×256,即65536个,或512×512,即262144个不等。显然,象素越小,数目越多,构成图像越细致,即空间分辨力(spatial resolution)高。CT图像的空间分辨力不如X线图像高。 CT图像是以不同的灰度来表示,反映器官和组织对X线的吸收程度。因此,与X线图像所示的黑白影像一样,黑影表示低吸收区,即低密度区,如含气体多的肺部;白影表示高吸收区,即高密度区,如骨骼。但是CT与X线图像相比,CT的密度分辨力高,即有高的密度分辨力(density resolutiln)。因此,人体软组织的密度差别虽小,吸收系数虽多接近于水,也能形成对比而成像。这是CT的突出优点。所以,CT可以更好地显示由软组织构成的器官,如脑、脊髓、纵隔、肺、肝、胆、胰以及盆部器官等,并在良好的解剖图像背景上显示出病变的影像。 x线图像可反映正常与病变组织的密度,如高密度和低密度,但没有量的概念。CT图像不仅以不同灰度显示其密度的高低,还可用组织对X线的吸收系数说明其密度高低的程度,具有一个量的概念。实际工作中,不用吸收系数,而换算成CT值,用CT值说明密度。单位为Hu(Hounsfield unit)。 水的吸收系数为10,CT值定为0Hu,人体中密度最高的骨皮质吸收系数最高,CT值定为+1000Hu,而空气密度最低,定为-1000Hu。人体中密度不同和各种组织的CT值则居于-1000Hu到+1000Hu的2000个分度之间。 CT图像是层面图像,常用的是横断面。为了显示整个器官,需要多个连续的层面图像。通过CT设备上图像的重建程序的使用,还可重建冠状面和矢状面的层面图像,可以多角度查看器官和病变的关系。 CT检查技术 分平扫(plain CT scan)、造影增强扫描(contrast enhancement,CE)和造影扫描。 (一)平扫 是指不用造影增强或造影的普通扫描。一般都是先作平扫。 (二)造影增强扫描 是经静脉注入水溶性有机碘剂,如60%~76%泛影葡胺60ml后再行扫描的方法。血内碘浓度增高后,器官与病变内碘的浓度可产生差别,形成密度差,可能使病变显影更为清楚。方法分团注法、静滴法和静注与静滴法几种。 (三)造影扫描 是先作器官或结构的造影,然后再行扫描的方法。例如向脑池内注入碘曲仑8~10ml或注入空气4~6ml行脑池造影再行扫描,称之为脑池造影CT扫描,可清楚显示脑池及其中的小肿瘤。 CT诊断的临床应用 CT诊断由于它的特殊诊断价值,已广泛应用于临床。但CT设备比较昂贵,检查费用偏高,某些部位的检查,诊断价值,尤其是定性诊断,还有一定限度,所以不宜将CT检查视为常规诊断手段,应在了解其优势的基础上,合理的选择应用。 CT诊断的特点及优势 CT检查对中枢神经系统疾病的诊断价值较高,应用普遍。对颅内肿瘤、脓肿与肉芽肿、寄生虫病、外伤性血肿与脑损伤、脑梗塞与脑出血以及椎管内肿瘤与椎间盘脱出等病诊断效果好,诊断较为可*。因此,脑的X线造影除脑血管造影仍用以诊断颅内动脉瘤、血管发育异常和脑血管闭塞以及了解脑瘤的供血动脉以外,其他如气脑、脑室造影等均已少用。螺旋CT扫描,可以获得比较精细和清晰的血管重建图像,即CTA,而且可以做到三维实时显示,有希望取代常规的脑血管造影。
CT是有辐射的,并且还很大,它的主要原理是通过X光扫描,电子计算机成像的。经常搞CT操作的医务人员都容易患放射病。 你不想有辐射的话可以根据情况做MRI(核磁共震),它是根据H粒子高速旋转成像的,但是装有心脏起博器的人不能做.
楼上答非所问。
X射线断层成像(Computerized Tomography,简称CT),是一种影像诊断学的检查。这一技术曾被称为电脑轴切面断层影像(Computed Axial Tomography)。X射线断层成像是一种利用数位几何处理后重建的三维放射线医学影像。该技术主要通过单一轴面的X射线旋转照射人体,由于不同的组织对X射线的吸收不同,可以用电脑的三维技术重建出断层面影像。经由窗宽、窗位处理,可以得到相应组织的断层影像。将断层影像层层堆栈,即可形成立体影像。X射线断层成像是一种利用数位几何处理后重建的三维放射线医学影像。该技术主要通过单一轴面的X射线旋转照射人体,由于不同的生物组织对X射线的吸收力(或称阻射率Radiodensity)不同,可以用电脑的三维技术重建出断层面影像,经由窗值、窗位处理,可以得到相对的灰阶影像,如果将影像用电脑软件堆栈,即可形成立体影像。优点和危险性优于X光影像的部分首先,X射线断层成像为医生提供器官的完整三维信息,而X光影像只能提供多断面的重叠投影;第二,由于电脑断层的高分辨率,不同组织阻射过所得的放射强度(Radiodensity)即使是小于1%的差异也可以区分出来;第三,由于断层成像技术提供三维图像,依诊断需要不同,可以看到轴切面,冠状面,矢切面的影像,我们称它为多平面数位重建(Multi-planar reformated imanging)。除此之外,任意切面的图像均可通过插值技术产生。这给诊和科研带来了极大的便利。辐射剂量X射线断层成像被视为中度至高度辐射的诊断技术,虽然技术的进步已经增加了辐射的效率,但是同时为了增加影像品质或为了更复杂的技术,还是有增加剂量的考量,进化过的分辨率使电脑断层可以进行新的研究,可以有更多的优点:例如和传统血管摄影比,电脑断层血管摄影可以避免插入静脉管和静脉导管;电脑断层大肠摄影也和大肠钡剂摄影一样用来诊断肿瘤,但是剂量更低。其方便性以及可适用的情形不断增加,使它日渐普及,最近在英国的综合评估中,电脑断层占了所有放射性检查的7%,但是在年间,它占了总合医疗放射剂量的47%(Hart & Wall, European Journal of Radiology -291),过度地使用电脑断层检查,不管其他地方怎么灭,还是会导致总体医疗剂量的上升,在一些特别研究放射剂量的论文还有考量很多因子:扫描的体积,PATIENT BUILD,扫描的数量和型式,还有需要的分辨率和影像品质。对比剂的负面反应由于X射线断层成像相当依赖静脉注射的对比剂来显影,所以有潜在的危险,危险虽低,却无法完全避免,这可能会使某些病人的肾脏受伤,如果是有肾功能衰竭或糖尿病等病史的病人,(另外还有REDUCED INTRAVASCULAR VOLUME)危险性可能更高。}

我要回帖

更多关于 盆腔ct解剖 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信