青少年狐臭如何治疗狐臭医院rt

河北中医治疗白癜风医院
作者:不详 来源:不详
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,未经本网站同意禁止转载本站发布的相关内容。1 引言&&& 此专家共识目的是为年轻无症状WPW样心电图改变患者的评估和处理提供一个最新临床实用指南。WPW这个术语第一次用于描述心电图QRS波群增宽呈“束支阻滞型”伴有短PR间期,临床常有阵发性心动过速和/或房颤(atrial fibrillation,AF) 的健康年轻患者。1930年Wolff、Parkinson 和White第一次正确认识这个综合征。此后,解剖学和电生理学的研究证实了房室旁路和房室结—希氏束与旁路的折返环路是WPW 综合征心电图改变和心动过速的解剖学基础。孤立的心室预激是指有预激心电图改变而无临床表现的患者,即无症状WPW或无症状WPW综合征。近年来,心电图筛查无症状WPW患者阳性率增高,而对这些患者最适宜的处理尚不清楚。成功导管消融能降低儿童无症状WPW患者的猝死风险,但对每个儿童采用统一标准治疗也可导致严重的并发症,引起的死亡率甚至高于未经治疗患儿。目前,对年轻无症状WPW患者的危险分层尚无明确指南。美国儿科与先天性电生理学会(PACES)和美国心律学会(HRS)选择编委会成员回顾和分析已出版文献,发布无症状WPW患者处理专家共识。2& WPW的自然病程和表现&&& 无症状WPW自然病程是从有症状和无症状患者资料中获得的。包括儿童和成人的大样本研究结果显示WPW 患病率约为0.1%~0.3%。家族研究显示WPW患者一级亲属的患病率为0.55%。由于无症状WPW是有预激心电图改变而无心悸,晕厥等临床表现的患者,所以诊断很困难。预激综合征患者中约有65%的青少年和40%的30岁以上人群表现为无症状。多数WPW患者无器质性心脏病,而胎儿阵发性室上速及新生儿、婴儿WPW的高发病率证实旁路是胚胎时遗留的组织。心肌病和先天性心脏病(congenital heart disease,CHD) 患者可发生WPW,Ebstein 畸形患者较常见。极少数WPW患者合并心脏横纹肌瘤。新生儿中常发现这种“旁路”,其与位于房室环和间隔部位的肿瘤相关,可能是由于房室环电生理特性被干扰引起而非真正旁路。肥厚性心肌病也可并存WPW,通常与特定基因突变有关。有症状WPW表现因年龄及旁路的位置和特性不同而不同。婴儿期有房室折返性心动过速(atrioventricular reciprocating tachycardia,AVRT) 发作,可明确诊断为有症状WPW。婴儿期有室上速发作的患者其室上速发作频次在1岁内降低(>90%的患者),但30%在7~8岁时可再发心动过速。亦有证据显示约40% 的患者在1岁内旁路失去前传功能,甚至有些患者失去逆传功能。研究显示有室上速发作的成人患者,31%在5年内旁路失去前传功能。少数WPW患者可因心室预激影响血流动力学。Tomaske等发现在儿科患者中,消融间隔旁路后射血分数得到改善。有限资料显示间隔旁路的这种影响可能与旁路特殊位置引起的心室激动顺序有关。&&& 最令人担忧的是晕厥或心搏骤停可能是WPW综合征的首发表现。WPW综合征患者猝死的机制是房扑和房颤的快速传导引起室颤(ventricular fibrillation,VF)。虽然从心源性猝死(sudden cardiac death,SCD) 中抢救过来的WPW患者多数有早期症状,但部分患者VF或心搏骤停仍可能是首发表现,尤其在儿童中。1979年,Klein等报道了25例表现出VF的WPW患者,而前期无症状的患者都是儿童(8、9和16岁)。1993年Russell等对256例WPW患者观察危及生命事件的研究显示,60例无症状儿童中,6例(10%)以威胁生命症状作为首发表现。在一项对42例儿科WPW并心脏停搏患者的研究中,48%的患者心脏停搏是首发表现。1996年,Bromberg等报道一组年龄≤18岁有不同危险等级的60例儿童患者,10例高危者中2例以VF停搏为首发表现。这些回顾性研究没有对无症状WPW患儿威胁生命事件进行随访,但资料高度提示在儿童无症状WPW患者中这些事件发生率明显高于成人。人群研究对WPW患者致命性心律失常发生率的评估不同,但大部分研究报道SCD发生率很低(表1) 。&&& 最近一项对成人无症状WPW患者平均38个月随访研究显示,猝死(包括心源性猝死幸存者)发生率为4.5 /1000人年。此外,无症状个体也可发生室上速。在一项包括成人和儿童的以社区为基础的研究中,53例无症状患者,平均年龄(35±16)岁,无一例猝死,但约1/3的40岁以下无症状WPW患者变为有症状,发生室上速或出现心悸。尽管大多数自然病程研究(表1)显示,无症状WPW患者预后良好,但这些研究尚有一定局限性(随访时间不同、无症状和有症状患者比例不同及年龄<21岁患者比例不同)。有SVT反复发作的心源性猝死常见于WPW合并房颤患者。在两项包括成人和儿童的386名患者随访10年研究中,15%发生自发性AF,4名患者发生猝死(年龄20、31、34、71岁) 。最近一项对709名接受电生理(electrophysiologic,EP) 检查的WPW患者研究中,44名患者以AF为首发表现。有晕厥史和无症状患者AF可诱发率分别为25.5%(24/94)和17%(42/248) 。仅通过自然病程来判断WPW患者有发生致命性心律失常的高风险性仍是一个难题,在缺乏无创和有创检查情况下,所报道的高危指标包括年轻患者(<30岁) 、男性、AF 病史、晕厥史、合并先天性或者其他心脏疾病及家族性WPW。3& WPW的危险分层&&& 当前医疗实践对儿童无症状WPW患者危险分层目的是识别哪部分群体有发生致命性心律失常的风险。最简单的危险分层方法是用无创检查(如动态或运动负荷试验)明确在生理心率时预激波消失。当不能明确显性预激波完全消失时,需考虑有创电生理检查。VF发生的关键因素是旁路前传生理不应期短,表现为AF 时预激心搏间最短RR间期。有创电生理检查除了观察旁路的数量和位置,旁路、房室结的前传和逆传特性及旁路有效不应期和心动周期对旁路有效不应期的影响,此外还需观察诱发AF时最短RR间期。4& WPW患者的无创评估4.1& 心电图&&& 预激并AF时心电图能“真实”评估旁路前传功能。最短预激RR间期(Shortest Pre-Excited R-RInterval,SPERRI)已用于判断旁路前传功能。研究显示,SPERRI在220~250ms之间,特别是短于220ms的情况主要见于曾经历过心脏骤停的WPW患者。间歇预激提示心脏骤停风险性低,但对间歇预激的认识尚不清楚,可能与旁路不应期和旁路内细胞连接方式(导致传导的变化)有关。这种间歇预激变化可在一次或不同时间记录中捕获,需通过动态监测或一系列心电图检查证实。在一项动态监测WPW的研究中,间歇预激发生率高达67%。间歇预激提示旁路前传功能差,但部分患者仍可发生室上速,且少数患者可发生心脏骤停。在一项主要对军队飞行员随访20年的大样本研究中,间歇与持续预激患者室上速发生率分别为8.3%和23%。多旁路是VF的危险因素,心电图或动态监测中记录到不同形态预激提示发生VF风险性更高。动态心电图监测可用于筛查阵发性AF,尤适用于短阵房性心律失常尚未明确的无症状WPW患者。在一项对184名儿童无症状WPW患者随访5年的前瞻性研究中,1年2次的动态心电图监测显示22名(12%) 患者有阵发性AF,显著高于成人无症状WPW患者。4.2& 药物使用&&& 钠通道阻滞剂曾用于评估旁路传导功能,但目前已不再常规使用。Gaita等报道65名(15例)无症状WPW心电图改变患者,受试者接受电生理检查,负荷试验及普鲁卡因胺和普罗帕酮等药理学试验。在电生理研究中,药物抑制旁路使APERP延长。与诱发AF心律下最短预激RR间期相比,使用钠通道阻滞剂后预激消失的特异性差。4.3& 运动负荷实验&&& 运动负荷实验中预激波的消失已被建议作为评估旁路不应期的一种替代方法。运动负荷实验中δ波的变化取决于交感刺激对旁路不应期和房室结传导的相对效应。Daubert等表明在运动负荷实验时,只有出现预激波突然且完全消失才能证实旁路前传有效不应期长。在一项主要以成人为对象的前瞻性研究中,运动负荷实验中持续预激对预测AF心律下SPERRI≤250ms或APERP≤250ms的灵敏度为96%,但特异度仅为17%,阳性预测值为40%,阴性预测值为88%。在24例伴随SPERRI/ERP≤250ms的患者中有1例患者在运动负荷实验中预激波突然消失,此例患者SPERRI为180ms。在一项以儿科患者为主要对象的研究中,仅有15%患者在运动实验中预激波突然消失。但应注意,由于运动加快房室结传导可使预激波变小致使微小预激波难以识别。研究证实,运动试验中预激波消失的儿童患者其APERP≥260 ms,但个别APERP=260ms的患者预激波不消失。Chimienti等对20例WPW患者注射异丙肾上腺素进行运动负荷试验的研究显示,APERP和AF时SPERRI之间无明显相关性,然而注入异丙肾上腺素后二者有相关性。5 有创性电生理研究的基本原理、概念和方法&&& 行无创检查无法明确旁路前传特性时,应考虑有创检查。对无症状WPW患者行有创电生理研究目的是找出潜在患者群,这些人群发生致命性心律失常的风险性高。最近调查显示,70%的电生理学家支持对成人无症状预激患者进行危险分层和预防性消融。对43位儿科电生理学家的调查中,84%的电生理学家曾应用电生理检查对儿童无症状WPW患者进行危险分层,77%的电生理学家认为AF心律下最短RR间期<240ms 实施射频消融术。研究显示有47%专家认为APERP<240ms的患者应实施射频消融。该文件将经食管或心内电生理检查定义为“有创”心电学检查。规范的食管和心内电生理检查对旁路前传特性的评价有显著相关性,但食管起搏在多旁路的识别、旁路逆传功能的评价及旁路的准确定位方面不如心内电生理检查。两种技术均采用了相似方法对AVRT的可诱发性、AF、APERP、心房起搏心律下1∶ 1 预激传导、诱发AF时SPERRI、异丙肾上腺素的应用方面进行评估。异丙肾上腺素可导致旁路前传不应期缩短及在心房起搏和AF 时心室率增加。当心动过速持续时间>1min时,此时AF或AVRT被称为持续性AF或AVRT。6 WPW的电生理危险分层6. 1 有症状患者&&& 成人WPW患者的临床研究证实AF心律下SPERRI≤220~250ms 是发生VF最明显指征。基于一项对成人和儿科患者的研究(年龄5~68岁,平均年龄28岁) ,APERP有效性低,其原因为:(1)APERP对危及生命事件(180~310ms)的预测能力低于AF心律下SPERRI; (2)对于WPW伴VF患者和WPW伴AVRT但无VF患者其对危及生命事件的预测能力相似。在有症状患者中,多旁路和间隔旁路的存在可能是发生VF的独立危险因素。多旁路也可能是AF发展为VF的独立危险因素。AF心律下SPERRI对识别成人有症状患者发生VF的灵敏度为88%~100%,但由于这些患者心脏骤停发生率低,SPERRI<220ms阳性预测值仅为19%~38%,是反对有创电生理检查常规识别风险人群的证据。Bromberg等评估了年龄≤18岁儿童有症状WPW患者,将这些患者分3组,一组有VF史,一组有晕厥或自发AF史,一组有孤立的折返性室上性心动过速史。所有曾经历临床VF或心脏骤停的患者(电生理检查时可以诱发AF) 其SPERRI<220ms 灵敏度为100%,与之对比另外两组SPERRI<220ms的灵敏度分别为74%和35%。研究表明,SPERRI<220ms患者发生SCD的风险较一般WPW患者增加3倍。Paul等对74例儿童有症状WPW 患者进行有创电生理研究,14例有晕厥史患者中9例发生持续性AF,而在60例没有晕厥史患者中无一例发生持续性AF。所有曾经历AF和晕厥的患者SPERRI≤220ms(灵敏度为100%) 。34例无晕厥史但有可诱发非持续性AF史患者中,9例患者SPERRI≤220ms(特异度为74%) 。将晕厥的产生归因于WPW时需排除血管迷走神经性晕厥的影响。&&& 在儿童患者中,APERP对晕厥、AF或室上性心动过速的风险性预测价值有限,APERP与VF的相关性低于AF心律下SPERRI。虽然旁路电生理特性可随年龄而发生变化,但多数有短APERP(<260ms)的患者其潜在风险性不会随年龄而发生明显改变。Teo报道在房室连接处多旁路存在并伴随SPERRI<250ms对将来发生心律失常事件预测特异度可达92%,阳性预测值可达22%。6. 2 无症状患者&&& 无症状WPW患者进行有创电生理评估目的是预测其发生SCD风险。不同研究中症状与电生理指标的相关性不同。Santinelli等观察到旁路短不应期和多旁路存在与临床症状有关,然而Dubin等认为二者与临床症状无关。间歇预激或旁路具有递减传导功能患者的旁路前传功能差,其发生SCD风险较低。旁路失去逆传功能的WPW患者发生SCD风险同样较低。Leitch等在一项对75例成人无症状WPW患者研究中观察到27%的患者旁路失去逆传功能。约20%成人无症状患者旁路可能失去前传功能,其发生SCD风险几乎为零。年龄>35岁成人患者虽有上述自然病程,但部分患者可能有一些电生理指标提示将来有发生SCD风险。20%~26%成人无症状WPW患者SPERRI<250ms。为了证实这些发现,Delise等对比分析了年轻成人无症状和有症状WPW 患者,通过心内膜刺激观察到AF和SPERRI<250ms的发生率在两组间无差异,而旁路逆向传导在有症状患者中发生率明显增高(100% VS22%)。在一项对21例成人无症状WPW 患者的研究中,有创电生理评估时异丙肾上腺素的使用能明显缩短SPERRI(从264ms缩短到219ms) ,致67%的患者SPERRI≤250ms,33%患者无变化。研究显示在麻醉状态下儿童电生理检查时异丙肾上腺素可能作为肾上腺素能激动剂的替代品。异丙肾上腺素明显缩短APERP、心房起搏1:1预激时最短周期时间,同时缩短有症状和无症状患者SPERRI,使SPERRI≤250ms患者的比例从7%增加到38%。在无症状组,APERP缩短(74±92)ms,心房起搏1:1预激时最短周期时间缩短(110±102)ms,同时SPERRI 缩短(88±57)ms。&&& 意大利米兰的研究人员最近公布了三项有关预激治疗和猝死风险的研究。一项对212例无症状WPW患者的前瞻性研究显示,经过5年时间33例患者变为有症状。短APERP结合SVT可诱发性对将来发生心律失常事件的阳性预测值为47%,阴性预测值为97%。有3例初始无症状伴APERP<200ms和SPERRI<230ms患者后来发生VF。在Milanese的研究中,对184例儿童无症状WPW患者进行5年随访并收集临床和有创电生理数据,与仍无症状的患者相比,51例后来变为有症状的患者可观察到其有不同电生理指标,包括APERP≤240ms(89%VS17%) 、多旁路的存在(47%VS6.0%) 、完整的AV折返性SVT环路(84%VS23%) 。3例患者曾经历VF,但都成功转复未留下神经性后遗症。值得注意的是,3例患者在入院前(1例)或入院时(2例) 都曾有过预激性AF伴快速心室反应的病史。在初始电生理研究时3例患者的旁路有高风险性特点(APERP<220ms和SPERRI<200ms) ,随后都成功消融。APERP≤240ms 在VF风险评估方面有高灵敏度(100%)和阴性预测值,但对VF发生风险低的患者其风险评估有低特异度(25%)和阳性预测值。在Pappone等的前瞻性临床试验中,47例心律失常高发风险的儿童无症状WPW患者被随机分为消融组和对照组。在3年随访观察中,7例儿童发展为有症状,2例发生AF并伴快速心室反应。多旁路的存在增加发生心律失常风险。值得一提的是,这三项研究危及生命事件发生率远高于一项对749例患者随访研究的荟萃分析(749例成人患者观察6年726人没有1例发生过SCD)。对儿童无症状WPW患者(这些患者在学龄期后预激持续存在)旁路进行有创评估,不能诱发折返性心动过速的患者约25%可能有短不应期旁路。Sarubbi等对98例儿童无症状WPW患者随访4年研究显示,在初始电生理研究中48%的患者可诱发室上性心动过速,但在随后观察中只有5例患者发生室上性心动过速(4例SVT,1例AF) 。旁路具有前传功能,但室上性心动过速不能被诱发的患者有良好预后。&&& 综上所述,SPERRI≤250 ms对无症状WPW患者的风险评估灵敏度高,阴性预测值高,但特异度和阳性预测值低。此外,由于成人和儿童无症状WPW者以后发生猝死概率低(表2) ,SPERRI≤250ms对其风险评估特异度和阳性预测值更低。异丙肾上腺素增加对有症状患者危险评估的灵敏度,将更多患者归为高危人群,但同时明显降低有创电生理检查特异度。6. 3 有创电生理研究的风险&&& 程控心房和/或心室调搏的电生理检查结果有助于对无症状WPW患者进行危险分层和解释心悸患者室上速的发生机制。有创电生理检查的并发症不常见,但接受有创检查对其发生致命性心律失常风险进行评估的患者,有可能在消融术后无获益。股静脉栓塞和/或动静脉瘘管形成发生率为2%,尤其是在儿童体重<10kg患者中更常见。在两项大样本(>1300例成人患者)研究中,与电生理操作相关的并发症包括静脉血栓(1%) 、肺栓塞(0.3%~1.6%) 、血栓性静脉炎(0.6%) 、感染(0.8%) 、导管引起的永久性房室阻滞(0.1%)。所有经食管或心内电生理研究,即使是在无症状患者中也可导致VF发生。诊断性电生理导管检查的患者所接受的射线量相对较小,但如果需要同时做其它有关检查例外。一般经食管起搏可避免接触射线。7 导管消融成功率、风险和注意问题&&& 1990第一次将导管射频消融术用于儿科WPW患者治疗,为以前只能通过药物、DC消融或是手术治疗的心律失常提供了一种具有潜力的根治疗法。导管射频消融术目前已广泛用于WPW治疗(列入一线疗法) 。这种理念归因于导管消融高成功率和低风险率(特别是冷冻消融在间隔旁路和靠近细小冠状动脉旁路中的应用后) 。充分了解当前导管消融治疗现状对建议那些儿科无症状WPW综合征患者采用消融治疗很关键。7.1& 导管消融有效性&&& 第一例儿童导管消融后不久,儿科电生理学会制定了儿童导管消融注册表。此注册表为导管消融治疗进展提供有价值的证据,推进儿科心脏消融研究的前瞻性评估(Prospective Assessment of Pediatric Cardiac Ablation study,PAPCA) 。20世纪90年代中期注册表数据显示: 在儿科患者中房室旁路导管消融成功率达91%。在一些成人患者的相似研究中,导管消融成功率随心律失常基质位置不同而不同。对成功导管消融后患者随访观察3年,复发率高达23%。医疗机构的经验很大程度上影响手术成功率。为进步评估手术经验,注册表数据分为早期(年)和晚期(年)SVT导管消融。总体上导管消融成功率有明显增加(从早期的90%到晚期的95.2%) 。对比分析这两个时期心律失常所有旁路位置,评估旁路手术成功率从89%增加到94%。在这项研究中观察到经导管消融旁路的患者其并发症发生率从4.3% 下降到2.9%,透视时间缩短21%,但仍高于平均值40.1 min。在随后PAPCA研究中,消融旁路总成功率为95.7%显性旁路消融成功率为93%。在一项随访1年的前瞻性研究中,消融旁路总复发率为10.7%,明显低于之前的报道。大多数复发患者在射频消融术后两个月再发心律失常。显性旁路复发率为11.3%,左侧和左间隔旁路复发率最低,右侧和右间隔旁路复发率最高。最近(2007年)一项对508例儿科和成人WPW患者的研究显示其导管消融结果与上文相似。所有位置旁路消融早期成功率为94.9% (最高为左游离壁、中间隔和右游离壁位置旁路)。右前间隔旁路消融成功率为78.5%。所有位置旁路都有较高的早期成功消融率,但仍可复发,右游离壁24.2%,中间隔16.7%,右前间隔14.3%,后间隔13%,左游离壁5%。一些小样本研究显示WPW 消融早期成功率为92%~100%,复发率为0%~13%。影响远期预后的因素包括潜在器质性心脏病和多旁路存在。7.2& 婴儿的消融结果&&& 婴儿期WPW引起的SVT通常可用药物控制。一些年轻患者因复杂病理基础(多旁路和/或先天性心脏病)和严重临床症状发生药物难治性心律失常,但其可能从导管射频消融中获益。注册研究表明,婴儿期消融手术成功率与年长儿童相似,但不利事件发生率相对较高。然而Blaufox等分析注册表数据时观察到年龄小于18个月和年龄大于18个月患者射频消融不利事件发生率无差异。在婴儿和较小儿童进行射频消融的适应症更应严格,一般无症状WPW患者通常不推荐进行危险分层及消融治疗。7.3& 冷冻消融术&&& 冷冻消融术已广泛用于儿科患者,尤适用于间隔旁路或旁路靠近冠状静脉窦患者。2006年,第一次对单显性间隔旁路儿科患者评估冷冻消融术效果研究显示: 冷冻消融术早期成功率与射频消融术早期成功率相似(88%) ,但复发率高于射频消融术。医疗机构经验积累使手术成功率从74%增加到83%,复发率从57%降到33%,表明手术经验和操作过程完善可改善治疗有效性。Collins等对旁路(显性和隐匿性)位于冠状静脉窦患者多中心研究结果也与上述相似。随着冷冻消融术在儿科患者各种位置旁路中应用和医疗机构经验积累,其他中心相继研究结果亦显示冷冻消融术能增加手术成功率和降低术后复发率。Drago等对早期成功冷冻消融术后复发的报道表明: 术者经验丰富可提高手术有效性和降低房室旁路传导复发率。Gist等研究显示24例左侧旁路患者经成功冷冻消融术后只有1例患者复发。2010年,Sacher等对89例消融未成功患者随访7年研究显示: 在应用多种方法(steerable sheaths,irrigated-tip catheters,cautious RF titration) 后,91%的患者成功消融,但中间隔旁路和希氏束旁旁路消融一直是个难题。7 例患者实施冷冻消融术6例患者早期成功,30天内3例患者复发。儿童患者冷冻消融术后需随访研究,分析评估冷冻消融术真实有效性和风险性,同时应和诊断性电生理检查及射频消融进行比较。7.4& 风险和并发症&&& 与导管消融相关的并发症包括房室阻滞、心脏穿孔、冠状动脉损伤及血栓栓塞事件。早期注册研究显示,总并发症发生率为3.2%,Ⅰ°或Ⅱ°房室阻滞发生率为0.7%,血栓形成或血栓栓塞事件发生率为0.3%。PAPCA研究报道导管消融相关并发症(不包括死亡) 发生率为4.0%,右束支阻滞发生率为0.5%,左束支阻滞发生率为0.1%,瓣膜反流发生率为0.3%。导管入路点血肿是最常见的并发症(1.4%) 。房室阻滞在显性旁路患者中发生率为0.9%(只在右侧或左侧间隔旁路的患者中发生)。一些调查研究(Manolis,Lee,Khairy等)表明射频消融可致血栓形成。射频消融中引起血栓形成的因素包括: 高温引起的凝血、组织坏死及内皮损伤。据报道射频消融致血栓栓塞事件发生率为0.6%~0.8%。经左侧心腔消融治疗的室性心动过速患者易发生体循环栓塞。在一项包括儿童患者多中心研究中,在用温度控制—射频消融治疗室上性心动过速(房室折返或房室结折返)时,栓子发生率为0.7%。抗凝治疗方案或温度控制—射频消融模式未消除形成血栓栓塞事件的风险。患儿体重<15kg曾被认为是手术并发症的高危因素,但随后研究发现,患儿体重更轻与手术并发症之间无统计学意义。2004年,Blaufox等研究显示: 小儿射频消融术并发症发生率与射频能量大小、损伤病灶数目、总操作时间及身高指数有关。该研究亦表明间隔旁路婴儿患者手术并发症发生率高(主要因此处旁路房室阻滞发生率高) 。在旁路引起心动过速的儿童、成人和动物研究中,行射频消融术所引起的冠脉损伤是继发于冠脉壁热损伤。后间隔旁路消融术可损伤左、右冠脉及右冠脉后降支。一项对250例WPW患者回顾性研究报道显示: 冠脉损伤发生率为0.8%。Solomon等对70例WPW综合征患者研究显示: 射频消融术后冠脉损伤发生率为1.3%。射频消融后引起冠脉狭窄可呈时间依赖性。一些动物研究(Paul,Bokenkamp,Aoyama等) 显示: 射频消融后早期和晚期都可引起冠脉损伤。在猪三尖瓣环心房侧行射频消融引起炎性因子释放,致右冠脉壁损伤,引起冠脉急性狭窄。随时间推移,这种损伤引起晚期冠脉狭窄。Bertram等报道:先天性心脏病尤其是三尖瓣Ebstein畸形患者,冠脉损伤发生率更高。Schneider等研究显示: 心脏结构正常的后间隔旁路患者,冠脉损伤发生率为1.7% (2/117) 。因小儿患者消融导管和冠脉之间的距离明显短于成人,其发生冠脉损伤风险更高。死亡是儿科患者消融术的并发症之一,常由心脏穿孔、心肌创伤、冠脉或脑栓塞和室性心律失常引起。注册研究显示: 儿科患者死亡总体发生率为0.22%。年龄在0.1岁到13.3岁之间的儿童,无器质性心脏病患者死亡率为0.12%,有器质性心脏病患者死亡率为0.89%。在无器质性心脏病死亡的5例儿童中,4例曾行导管消融术消融旁路。器质性心脏病、小儿、暴露于较大剂量放射线及经历左侧旁路手术患者其死亡率较高。8& 特殊人群8.1& WPW和先天性心脏病&&& 心室预激和WPW 伴先天性心脏病的关系已有认识。在一项对婴儿WPW患者研究中,20%的患者有先天性心脏病。心室预激常与Ebstein畸形有关(44%) ,亦与D-TGA、L-TGA、二尖瓣脱垂、法洛四联症和室间隔缺损等有关。Van等认为先天性心脏病患者AVRT易致血流动力学紊乱,此时需早期抗心律失常和消融治疗。WPW伴先天性心脏病的有限有创数据主要来源于伴Ebstein畸形患者。Ebstein畸形患者旁路大多位于右侧,且多数患者有多旁路。在一项伴或不伴Ebstein畸形WPW患者回顾性研究中,伴Ebstien畸形患者房室折返周期明显延长(359msVS310ms) ,但在AF心律下最短的预激RR间期没有明显差异(215msVS218 ms) 。65例伴Ebstein畸形WPW患儿射频消融结果显示: 右游离壁,右间隔和其它位置旁路射频消融早期成功率和复发率分别为79%/32%,89%/29% 和75% /27%。其中49%的患者有多旁路,22%的患者因致命性心律失常而行射频消融术。除先天性心脏病外,心肌病患者也可发生心室预激。一些基因变异与心室预激有关,如PRKAG2和AMPK基因。这些心肌病大多出现心肌肥厚,与心室预激相关的心肌肥厚可能继发于细胞内糖原累积。PRKAG2和AMPK基因变异患者心室预激是否由旁路介导目前尚不清楚,但易发心律失常,如窦房结功能紊乱、AF、加速的房室结传导和房室阻滞。在这些患者中已有SCD报道,但对SCD与心室预激关系的认识尚不清楚。8.2& 无症状WPW和注意力缺陷多动障碍&&& 注意力缺陷多动障碍(Attention-deficit/hyperactivity disorder,ADHD) 是儿童期最常见的神经行为障碍,其治疗以兴奋剂药物疗法为主。随着儿科人群中WPW伴ADHD发生率增加,接受ADHD药物治疗的WPW患者随之增加。虽编委会不主张对服用兴奋剂药物患者进行心电图筛查,但服用兴奋剂药物可增加无症状WPW患者阳性检出率。ADHD药物能增加心室率(平均1~2次/分钟) ,升高收缩压(平均3~4mmHg) 。部分服用ADHD药物患者可发生猝死,但WPW患者服用ADHD药物引起SCD尚无报道。食品和药物管理局报道服用ADHD药物猝死发生率(1992年至2004年) 低于文献报道的猝死发生率。服用甲基兴奋剂患者,其不利心脏事件发生是否与治疗相关尚无证据。儿童服用ADHD药物时需注意: 器质性心脏缺陷,心肌病或心脏节律紊乱是发生不利心脏事件(包括猝死)的高危因素。一项基于年轻人和中年人多中心队列研究中,服用ADHD药物未增加发生严重心血管事件风险。WPW患者存在使用ADHD 药物相关理论问题,对服用ADHD 药物的WPW儿童患者需接受儿童心脏病专家定期监测和随访。8.3 &WPW和运动&&& 对各级水平运动员(包括高中水平)进行评估时,心电图可筛查出WPW患者。一项对4个职业球队WPW运动员进行心电图筛查显示,各种潜在致命性因素检出率为80%~100%。目前,国家和联盟尚无特殊心电图诊断标准。一项对超过4000例职业运动员的研究显示,仅20例患者(大多数为肥厚性心肌病伴WPW患者) 15年内不允许参加比赛。运动员猝死注册研究显示,WPW运动员猝死率约为1%。大多数WPW患者SCD发生与运动有关,但运动并不能改变WPW电生理特点。第36届Bethesda会议建议从事中高水平竞技运动无症状运动员需进行电生理危险分层,但欧洲心脏病协会认为所有WPW运动员均应进行全面风险评估。危险因素评估包括: AF心律下SPERRI<240 ms、运动负荷或异丙肾上腺素应激试验中SPERRI <220ms、存在多旁路及易诱发AF。运动员若不存在上述危险因素,可参加体育竞技。目前欧洲心脏病协会和美国心脏病协会对无症状WPW运动员处理建议不同,但青少年出现心室预激时,应及时转诊到有儿科电生理专家的医院进行危险分层。9& 年轻(8~21岁)无症状WPW患者的处理建议9.1& 动态心电图发现持续性预激患者,建议在其身体许可条件下进行运动负荷试验(ⅡA推荐,B/C类证据) 。运动中随心率加快(生理范围) ,心电图明显的预激波突然消失,提示心脏猝死低危患者。但心电图和运动负荷检查预激波不明显时,难以确认。9.2& 对于无创试验未能发现预激波突然消失患者,建议行经食管或心腔内评估AF时SPERRI(ⅡA推荐,B/C类证据) 。9.3& AF心律下SPERRI≤250ms年轻WPW患者,心源性猝死风险增加。建议考虑导管消融治疗是合理的,但必须考虑消融治疗风险(ⅡA推荐,B/C类证据) 。9.4& 鉴于AF心律下SPERRI>250ms年轻WPW患者心脏性猝死风险较低,故可考虑推迟导管消融术(ⅡA推荐,C类证据) 。但如果房室旁路解剖位置和/或患者临床特征提示消融造成严重并发症(特别是房室阻滞、冠脉损伤) 风险较低,亦可考虑在电生理检查同时施行导管消融术(ⅡB推荐,B/C类证据) 。9.5& 年轻患者初次评估属于低危患者,在后续评估时可能会出现心悸、晕厥等症状。此时,应认为这些患者属于有症状WPW,建议进行导管消融治疗。9.6& 伴器质性心脏病的无症状WPW患者,其房性心动过速和房室折返性心动过速发生风险较高,易导致血流动力学不稳定,因此无论房室旁路前传特性如何,均应考虑进行导管消融治疗(ⅡB推荐,B/C类证据) 。9.7& 对因心室预激引起收缩失同步而影响心室功能的无症状WPW患者,无论其房室旁路前传特性如何,均应考虑进行导管消融治疗(ⅡB推荐,B/C类证据)。9.8& 对于需服用治疗注意力缺陷多动障碍药物的无症状WPW患者,美国心脏协会建议,宜在进行心脏评估后服用,并需接受小儿心脏病专家的定期监测和随访。年轻无症状WPW 患者处理建议流程详见图1。参考文献1. Wolff LPJ, White PD. Bundle-branch block with short PR interval in healthy young people to paroxysmal tachycardia. Am Heart J –704.2. Montoya PT, Brugada P, Smeets J, Talajic M, Della Bella P, Lezaun R, vd Dool A, Wellens HJ, Bayes de Luna A, Oter R, et al. Ventricular fibrillation in the Wolff-Parkinson-White syndrome. Eur Heart J
–150.3. Timmermans C, Smeets JL, Rodriguez LM, Vrouchos G, van den Dool A, Wellens HJ. Aborted sudden death in the Wolff-Parkinson-White syndrome. Am J Cardiol – 494.4. Klein GJ, Bashore TM, Sellers TD, Pritchett EL, Smith WM, Gallagher JJ. Ventricular fibrillation in the Wolff-Parkinson-White syndrome. N Engl J Med 0 –1085.5. Friedman RA, Walsh EP, Silka MJ, Calkins H, Stevenson WG, Rhodes LA, Deal BJ, Wolff GS, Demaso DR, Hanisch D, Van Hare GF. NASPE Expert Consensus Conference: Radiofrequency catheter ablation in children with and without congenital heart disease. Report of the writing committee. North American Society of Pacing and Electrophysiology. Pacing Clin Electrophysiol0 –1017.6. Zipes DP, Ackerman MJ, Estes NA 3rd, Grant AO, Myerburg RJ, Van Hare G. Task Force 7: arrhythmias. J Am Coll Cardiol 4 –1363.7. Guize L, Soria R, Chaouat JC, Chretien JM, Houe D, Le Heuzey JY. [Prevalence and course of Wolff-Parkinson-White syndrome in a population of 138,048 subjects]. Ann Med Interne (Paris) –478.8. Hiss RG, Lamb LE. Electrocardiographic findings in 122,043 individuals. Circulation –961.9. Swiderski J, Lees MH, Nadas AS. The Wolff-Parkinson-White syndrome in infancy and childhood. Br Heart J –580.10. Averill KH, Fosmoe RJ, Lamb LE. Electrocardiographic findings in 67,375 asymptomatic subjects. IV. Wolff-Parkinson-White syndrome. Am J Cardiol
–129.11. Davidoff R, Schamroth CL, Myburgh DP. The Wolff-Parkinson-White pattern in health aircrew. Aviat Space Environ Med
–558.12. Hejtmancik MR, Herrmann GR. The electrocardiographic syndrome of short P-R interval and broad QRS a clinical study of 80 cases. Am Heart J
–721.13. Manning GW. An electrocardiographic study of 17,000 fit, young Royal Canadian Air Force aircrew applicants. Am J Cardiol
–75.14. Vidaillet HJ Jr, Pressley JC, Henke E, Harrell FE Jr, German LD. Familial occurrence of accessory atrioventricular pathways (preexcitation syndrome). N Engl J Med – 69.15. Deal BJ, Keane JF, Gillette PC, Garson A Jr. Wolff-Parkinson-White syndrome and supraventricular tachycardia during infancy: management and follow-up. J Am Coll Cardiol
–135.16. Goudevenos JA, Katsouras CS, Graekas G, Argiri O, Giogiakas V, Sideris DA. Ventricular pre-excitation in the general population: a study on the mode of presentation and clinical course. Heart
–34.17. Munger TM, Packer DL, Hammill SC, Feldman BJ, Bailey KR, Ballard DJ, Holmes DR Jr, Gersh BJ. A population study of the natural history of Wolff-Parkinson-White syndrome in Olmsted County, Minnesota, . Circulation –873.18. Becquart J, Vaksmann G, Becquart V, Dupuis C. [Prognosis of Wolff-Parkinson-White syndrome in infants. Apropos of 31 cases]. Arch Mal Coeur Vaiss –700.19. Soria R, Guize L, Chretien JM, Le Heuzey JY, Lavergne T, Desnos M, Hagege A, Guerre Y. [The natural history of 270 cases of Wolff-Parkinson-White syndrome in a survey of the general population]. Arch Mal Coeur Vaiss –336.20. Perry JC, Garson A Jr. Supraventricular tachycardia due to Wolff-Parkinson-White syndrome in children: early disappearance and late recurrence. J Am Coll Cardiol 5–1220.21. Kolditz DP, Wijffels MC, Blom NA, van der Laarse A, Markwald RR, Schalij MJ, Gittenberger-de Groot AC. Persistence of functional atrioventricular accessory pathways in postseptated embryonic avian hearts: implications for morphogenesis and functional maturation of the cardiac conduction system. Circulation –26.22. Murphy RT, Mogensen J, McGarry K, Bahl A, Evans A, Osman E, Syrris P, Gorman G, Farrell M, Holton JL, Hanna MG, Hughes S, Elliott PM, Macrae CA, McKenna WJ. Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome: natural history. J Am Coll Cardiol –930.23. Ghosh S, Avari JN, Rhee EK, Woodard PK, Rudy Y. Hypertrophic cardiomyopathy with preexcitation: insights from noninvasive electrocardiographic imaging (ECGI) and catheter mapping. J Cardiovasc Electrophysiol 5–1217.24. Arad M, Maron BJ, Gorham JM, Johnson WH Jr, Saul JP, Perez-Atayde AR, Spirito P, Wright GB, Kanter RJ, Seidman CE, Seidman JG. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med –372.25. Maron BJ, Roberts WC, Arad M, Haas TS, Spirito P, Wright GB, Almquist AK, Baffa JM, Saul JP, Ho CY, Seidman J, Seidman CE. Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA 3–1259.26. Benson DW Jr, Dunnigan A, Benditt DG. Follow-up evaluation of infant paroxysmal atrial tachycardia: transesophageal study. Circulation –549.27. Fan W, Peter CT, Gang ES, Mandel W. Age-related changes in the clinical and electrophysiologic characteristics of patients with Wolff-Parkinson-White syndrome:comparative study between young and elderly patients. Am Heart J –747.28. Klein GJ, Yee R, Sharma AD. Longitudinal electrophysiologic assessment of asymptomatic patients with the Wolff-Parkinson-White electrocardiographic pattern. N Engl J Med 9 –1233.29. Santinelli V, Radinovic A, Manguso F, Vicedomini G, Gulletta S, Paglino G, Mazzone P, Ciconte G, Sacchi S, Sala S, Pappone C. The natural history of asymptomatic ventricular pre-excitation a long-term prospective follow-up study of 184 asymptomatic children. J Am Coll Cardiol –280.30. Sarubbi B, Scognamiglio G, Limongelli G, Mercurio B, Pacileo G, Pisacane C, Russo MG, Calabro R. Asymptomatic ventricular pre-excitation in children and adolescents: a 15 year follow up study. Heart –217.31. Emmel M, Balaji S, Sreeram N. Ventricular preexcitation associated with dilated cardiomyopathy: a causal relationship? Cardiol Young –599.32. Tomaske M, Janousek J, Razek V, Gebauer RA, Tomek V, Hindricks G, Knirsch W, Bauersfeld U. Adverse effects of Wolff-Parkinson-White syndrome with right septal or posteroseptal accessory pathways on cardiac function.Europace –189.33. Dreifus LS, Haiat R, Watanabe Y, Arriaga J, Reitman N. Ventricular fibrillation. A possible mechanism of sudden death in patients and Wolff-Parkinson-White syndrome. Circulation
–527.34. Topaz O, Perin E, Cox M, Mallon SM, Castellanos A, Myerburg RJ. Young adult survivors of sudden cardiac arrest: analysis of invasive evaluation of 22 subjects. Am Heart J –287.35. Russell MW DP, Dick MD. Incidence of catastrophic events associated with the Wolff-Parkinson-White syndrome in young patients: diagnostic and therapeutic dilemma. Circulation 4(a).36. Deal BJ DM, Beerman L, Silka M, Walsh EP, Klitzner T, Kugler J. Cardiac arrest in young patients with Wolff-Parkinson-White syndrome Pacing Clin Electrophysiol (a).37. Bromberg BI, Lindsay BD, Cain ME, Cox JL. Impact of clinical history and electrophysiologic characterization of accessory pathways on management strategies to reduce sudden death among children with Wolff-Parkinson-White syndrome. J Am Coll Cardiol –695.38. Pappone C, Santinelli V, Rosanio S, Vicedomini G, Nardi S, Pappone A, Tortoriello V, Manguso F, Mazzone P, Gulletta S, Oreto G, Alfieri O. Usefulness of invasive electrophysiologic testing to stratify the risk of arrhythmic events in asymptomatic patients with Wolff-Parkinson-White pattern: results from a large prospective long-term follow-up study. J Am Coll Cardiol
–244.39. Fukatani M, Tanigawa M, Mori M, Konoe A, Kadena M, Shimizu A, Hashiba K. Prediction of a fatal atrial fibrillation in patients with asymptomatic Wolff-Parkinson-White pattern. Jpn Circ J 1–1339.40. Pietersen AH, Andersen ED, Sandoe E. Atrial fibrillation in the Wolff-Parkinson-White syndrome. Am J Cardiol A–43A.41. Brembilla-Perrot B, Moejezi RV, Zinzius PY, Jarmouni S, Schwartz J, Beurrier D, Sellal JM, Nossier I, Muresan L, Andronache M, Moisei R, Selton O, Louis P, de la Chaise AT. Missing diagnosis of preexcitation syndrome on ECG Clinical and electrophysiological significance. Int J Cardiol 2011;[Epub ahead of print]. Int J Cardiol 2011 June 23.42. Smith WM, Gallagher JJ, Kerr CR, Sealy WC, Kasell JH, Benson DW Jr, Reiter MJ, Sterba R, Grant AO. The electrophysiologic basis and management of symptomatic recurrent tachycardia in patients with Ebstein’s anomaly of the tricuspid valve. Am J Cardiol 3–1234.43. Klein GJ, Gulamhusein SS. Intermittent preexcitation in the Wolff-Parkinson-White syndrome. Am J Cardiol –296.44. Kinoshita S, Konishi G, Kinoshita Y. Mechanism of intermittent preexcitation in the Wolff-Parkinson-White syndrome. The concept of electronically mediated conduction across an inexcitable gap. Chest 9 –1281.45. Middlekauff HR, Stevenson WG, Klitzner TS. Linking: a mechanism of intermittent preexcitation in the Wolff-Parkinson-White syndrome. Pacing Clin Electrophysiol 9 –1636.46. Morgan-Hughes NJ, Griffith MJ, McComb JM. Intravenous adenosine reveals intermittent preexcitation by direct and indirect effects on accessory pathway conduction. Pacing Clin Electrophysiol 8 –2103.47. Hindman MC, Last JH, Rosen KM. Wolff-Parkinson-White syndrome observed by portable monitoring. Ann Intern Med –663.48. Milstein S, Sharma AD, Klein GJ. Electrophysiologic profile of asymptomatic Wolff-Parkinson-White pattern. Am J Cardiol 7–1100.49. Fitzsimmons PJ, McWhirter PD, Peterson DW, Kruyer WB. The natural history of Wolff-Parkinson-White syndrome in 228 military aviators: a longterm follow-up of 22 years. Am Heart J
–536.50. Pappone C, Manguso F, Santinelli R, Vicedomini G, Sala S, Paglino G, Mazzone P, Lang CC, Gulletta S, Augello G, Santinelli O, Santinelli V. Radiofrequency ablation in children with asymptomatic Wolff-Parkinson-White syndrome. N Engl J Med 7–1205.51. Weng KP, Wolff GS, Young ML. Multiple accessory pathways in pediatric patients with Wolff-Parkinson-White syndrome. Am J Cardiol 8–1183.52. Bardy GH, Packer DL, German LD, Gallagher JJ. Preexcited reciprocating tachycardia in patients with Wolff-Parkinson-White syndrome: incidence and mechanisms. Circulation –391.53. Sarubbi B, D’Alto M, Vergara P, Calvanese R, Mercurio B, Russo MG, Calabro R. Electrophysiological evaluation of asymptomatic ventricular preexcitation in children and adolescents. Int J Cardiol –214.54. Gaita F, Giustetto C, Riccardi R, Mangiardi L, Brusca A. Stress and pharmacologic tests as methods to identify patients with Wolff-Parkinson-White syndrome at risk of sudden death. Am J Cardiol – 490.55. Sharma AD, Yee R, Guiraudon G, Klein GJ. Sensitivity and specificity of invasive and noninvasive testing for risk of sudden death in Wolff-Parkinson-White syndrome. J Am Coll Cardiol –381.56. Wellens HJ, Bar FW, Gorgels AP, Vanagt EJ. Use of ajmaline in patients with the Wolff-Parkinson-White syndrome to disclose short refractory period of the accessory pathway. Am J Cardiol
–133.57. Wellens HJ, Braat S, Brugada P, Gorgels AP, Bar FW. Use of procainamide in patients with the Wolff-Parkinson-White syndrome to disclose a short refractory period of the accessory pathway. Am J Cardiol 7–1089.58. Bricker JT, Porter CJ, Garson A Jr, Gillette PC, McVey P, Traweek M, McNamara DG. Exercise testing in children with Wolff-Parkinson-White syndrome. Am J Cardiol 1–1004.59. Perry JC, Giuffre RM, Garson A Jr. Clues to the electrocardiographic diagnosis of subtle Wolff-Parkinson-White syndrome in children. J Pediatr –875.60. Daubert C, Ollitrault J, Descaves C, Mabo P, Ritter P, Gouffault J. Failure of the exercise test to predict the anterograde refractory period of the accessory pathway in Wolff Parkinson White syndrome. Pacing Clin Electrophysiol 0 –1138.61. Bershader RS BC, Cecchin F. Exercise testing for risk assessment in pediatric Wolff-Parkinson-White syndrome. Heart Rhythm 8 –S139.62. Chimienti M, Li Bergolis M, Moizi M, Klersy C, Negroni MS, Salerno JA. Comparison of isoproterenol and exercise tests in asymptomatic subjects with Wolff-Parkinson-White syndrome. Pacing Clin Electrophysiol 8–1166.63. Pappone C, Radinovic A, Santinelli V. Sudden death and ventricular preexcitation:is it necessary to treat the asymptomatic patients? Curr Pharm Des –765.64. Campbell RM, Strieper MJ, Frias PA, Collins KK, Van Hare GF, Dubin AM. Survey of current practice of pediatric electrophysiologists for asymptomatic Wolff-Parkinson-White syndrome. Pediatrics 5– e247.65. Brembilla-Perrot B, Chometon F, Groben L, Ammar S, Bertrand J, Marcha C, Cloez JL, Tisserand A, Huttin O, Tatar C, Duhoux F, Yangni N’da O, Beurrier D, Terrier de Chaise A, Zhang N, Abbas M, Cedano J, Marcon F. Interest of non-invasive and semi-invasive testings in asymptomatic children with preexcitation syndrome. Europace – 843.66. Favale S, Minafra F, Massari V, Tritto M, Rizzon P. Transesophageal versus intracardiac atrial stimulation in assessing anterograde conduction properties of the accessory pathway in Wolff-Parkinson-White syndrome. Int J Cardiol
–214.67. Yamamoto T, Yeh SJ, Lin FC, Wu DL. Effects of isoproterenol on accessory pathway conduction in intermittent or concealed Wolff-Parkinson-White syndrome. Am J Cardiol 8 –1442.68. Rinne C, Klein GJ, Sharma AD, Yee R, Milstein S, Rattes MF. Relation between clinical presentation and induced arrhythmias in the Wolff-Parkinson-White syndrome. Am J Cardiol
–579.69. Teo WS, Klein GJ, Guiraudon GM, Yee R, Leitch JW, McLellan D, Leather RA, Kim YH. Multiple accessory pathways in the Wolff-Parkinson-White syndrome as a risk factor for ventricular fibrillation. Am J Cardiol –891.70. Iesaka Y, Yamane T, Takahashi A, Goya M, Kojima S, Soejima Y, Okamoto Y, Fujiwara H, Aonuma K, Nogami A, Hiroe M, Marumo F, Hiraoka M. Retrograde multiple and multifiber accessory pathway conduction in the Wolff-Parkinson-White syndrome: potential precipitating factor of atrial fibrillation. J Cardiovasc Electrophysiol –151.71. Priori SG, Aliot E, Blomstrom-Lundqvist C, Bossaert L, Breithardt G, Brugada P, Camm AJ, Cappato R, Cobbe SM, Di Mario C, Maron BJ, McKenna WJ, Pedersen AK, Ravens U, Schwartz PJ, Trusz-Gluza M, Vardas P, Wellens HJ, Zipes DP. Task Force on Sudden Cardiac Death of the European Society of Cardiology. Eur Heart J 4 –1450.72. Blomstrom-Lundqvist C, Scheinman MM, Aliot EM, Alpert JS, Calkins H, Camm AJ, Campbell WB, Haines DE, Kuck KH, Lerman BB, Miller DD, Shaeffer CW Jr, Stevenson WG, Tomaselli GF, Antman EM, Smith SC Jr, Faxon DP, Fuster V, Gibbons RJ, Gregoratos G, Hiratzka LF, Hunt SA, Jacobs AK, Russell RO Jr, Priori SG, Blanc JJ, Budaj A, Burgos EF, Cowie M, Deckers JW, Garcia MA, Klein WW, Lekakis J, Lindahl B, Mazzotta G, Morais JC, Oto A, Smiseth O, Trappe HJ. ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias– utive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Supraventricular Arrhythmias). Circulation 1–1909.73. Paul T, Guccione P, Garson A Jr. Relation of syncope in young patients with Wolff-Parkinson-White syndrome to rapid ventricular response during atrial fibrillation. Am J Cardiol
–321.74. Lee PC, Hwang B, Tai CT, Chiang CE, Yu WC, Chen SA. The different electrophysiological characteristics in children with Wolff-Parkinson-White syndrome between those with and without atrial fibrillation. Pacing Clin Electrophysiol –239.75. Dubin AM, Collins KK, Chiesa N, Hanisch D, Van Hare GF. Use of electrophysiologictesting to assess risk in children with Wolff-Parkinson-White syndrome. Cardiol Young
–252.76. Brembilla-Perrot B, Ghawi R. Electrophysiological characteristics of asymptomatic Wolff-Parkinson-White syndrome. Eur Heart J –515.77. Wellens HJ. Should catheter ablation be performed in asymptomatic patients with Wolff-Parkinson-White syndrome? When to perform catheter ablation in asymptomatic patients with a Wolff-Parkinson-White electrocardiogram. Circulation 1–2207; discussion 2216.78. Drago F, Turchetta A, Calzolari A, Guccione P, Santilli A, Pompei E, Ragonese P, Galioto FM Jr. Detection of atrial vulnerability by transesophageal atrial pacing and the relation of symptoms in children with Wolff-Parkinson-White syndrome and in a symptomatic control group. Am J Cardiol –401.79. Murdock CJ, Leitch JW, Teo WS, Sharma AD, Yee R, Klein GJ. Characteristics of accessory pathways exhibiting decremental conduction. Am J Cardiol
–510.80. Leitch JW, Klein GJ, Yee R, Murdock C. Prognostic value of electrophysiology testing in asymptomatic patients with Wolff-Parkinson-White pattern. Circulation 8 –1723.81. Pappone C, Santinelli V. Should catheter ablation be performed in asymptomatic patients with Wolff-Parkinson-White syndrome? Catheter ablation should be performed in asymptomatic patients with Wolff-Parkinson-White syndrome.Circulation 7–2215; discussion 2216.82. Beckman KJ, Gallastegui JL, Bauman JL, Hariman RJ. The predictive value of electrophysiologic studies in untreated patients with Wolff-Parkinson-White syndrome. J Am Coll Cardiol –647.83. Delise P, D’Este D, Bonso A, Raviele A, Di Pede F, Millosevich P, Livio A, Piccolo E. [Different degrees of risk of high-frequency atrial fibrillation in symptomatic and asymptomatic WPW syndrome. Electrophysiologic evaluation].G Ital Cardiol –133.84. Bertaglia E DP, Coro L, Baso A, D’Este D, Rizzardo P, Raviele A, Pascotto P. Valore pronostico della valutzione electrofisiologica poliparametrica in giovanni sportive asintomiatici con syndrome di Wolff-Parkinson-White. Int J Sports Cardiol
–34.85. Szabo TS, Klein GJ, Sharma AD, Yee R, Milstein S. Usefulness of isoproterenol during atrial fibrillation in evaluation of asymptomatic Wolff-Parkinson-White pattern. Am J Cardiol –192.86. Moore JP, Kannankeril PJ, Fish FA. Isoproterenol administration during general anesthesia for the evaluation of children with ventricular preexcitation. Circ Arrhythm Electrophysiol –78.87. Fazio G, Mossuto C, Basile I, Gennaro F, D’Angelo L, Visconti C, Ferrara F, Novo G, Pipitone S, Novo S. Asymptomatic ventricular pre-excitation in children. J Cardiovasc Med (Hagerstown) –63.88. Kulkarni S, Naidu R. Vascular ultrasound imaging to study immediate postcatheterization vascular complications in children. Catheter Cardiovasc Interv –455.89. Horowitz LN, Kay HR, Kutalek SP, Discigil KF, Webb CR, Greenspan AM, Spielman SR. Risks and complications of clinical cardiac electrophysiologic studies: a prospective analysis of 1,000 consecutive patients. J Am Coll Cardiol 1–1268.90. Dimarco JP, Garan H, Ruskin JN. Complications in patients undergoing cardiac electrophysiologic procedures. Ann Intern Med –493.91. Brembilla-Perrot B, Dechaux JP. Ventricular fibrillation induced by transesophageal atrial pacing in asymptomatic Wolff-Parkinson-White syndrome.Am Heart J
–567.92. Kugler JD, Danford DA, Deal BJ, Gillette PC, Perry JC, Silka MJ, Van Hare GF, Walsh EP. Radiofrequency catheter ablation for tachyarrhythmias in children and adolescents. The Pediatric Electrophysiology Society. N Engl J Med 1–1487.93. Van Hare GF, Javitz H, Carmelli D, Saul JP, Tanel RE, Fischbach PS, Kanter RJ, Schaffer M, Dunnigan A, Colan S, Serwer G. Prospective assessment after pediatric cardiac ablation: demographics, medical profiles, and initial outcomes. J Cardiovasc Electrophysiol
–770.94. Kugler JD, Danford DA, Houston K, Felix G. Radiofrequency catheter ablation for paroxysmal supraventricular tachycardia in children and adolescents without structural heart disease. Pediatric EP Society, Radiofrequency Catheter Ablation Registry. Am J Cardiol 8 –1443.95. Kugler JD, Danford DA, Houston KA, Felix G. Pediatric radiofrequency catheter ablation registry success, fluoroscopy time, and complication rate for supraventricular tachycardia: comparison of early and recent eras. J Cardiovasc Electrophysiol
–341.96. Van Hare GF, Javitz H, Carmelli D, Saul JP, Tanel RE, Fischbach PS, Kanter RJ, Schaffer M, Dunnigan A, Colan S, Serwer G. Prospective assessment after pediatric cardiac ablation: recurrence at 1 year after initially successful ablation of supraventricular tachycardia. Heart Rhythm
–196.97. Belhassen B, Rogowski O, Glick A, Viskin S, Ilan M, Rosso R, Eldar M. Radiofrequency ablation of accessory pathways: a 14 year experience at the Tel Aviv Medical Center in 508 patients. Isr Med Assoc J –270.98. Dick M 2nd, O’Connor BK, Serwer GA, LeRoy S, Armstrong B. Use of radiofrequency current to ablate accessory connections in children. Circulation 8 –2324.99. Van Hare GF, Lesh MD, Scheinman M, Langberg JJ. Percutaneous radiofrequency catheter ablation for supraventricular arrhythmias in children. J Am Coll Cardiol 3–1620.100. Tanel RE, Walsh EP, Triedman JK, Epstein MR, Bergau DM, Saul JP. Fiveyear experience with radiofrequency catheter ablation: implications for management of arrhythmias in pediatric and young adult patients. J Pediatr –887.101. Lee PC, Hwang B, Chen YJ, Tai CT, Chen SA, Chiang CE. Electrophysiologic characteristics and radiofrequency catheter ablation in children with Wolff-Parkinson-White syndrome. Pacing Clin Electrophysiol –495.102. Celiker A, Kafali G, Karagoz T, Ceviz N, Ozer S. The results of electrophysiological study and radio-frequency catheter ablation in pediatric patients with tachyarrhythmia. Turk J Pediatr
–216.103. Montenero AS, Drago F, Crea F, Varano C, Guarneri S, Cipriani A, Pelargonio G, Agostino DA, Bellocci F, Ragonese P, Zecchi P. [Transcatheter radiofrequency ablation in supraventricular tachycardia in children: immediate results and mid-term follow-up]. G Ital Cardiol – 40.104. Van Hare GF, Lesh MD, Stanger P. Radiofrequency catheter ablation of supraventricular arrhythmias in patients with congenital heart disease: results and technical considerations. J Am Coll Cardiol – 890.105. Hebe J, Antz M, Siebels J, Volkmer M, Ouyang F, Kuck KH. [High frequency current ablation of supraventricular tachyarrhythmias in congenital heart defects].Herz –250.106. Blaufox AD, Felix GL, Saul JP. Radiofrequency catheter ablation in infants </=18 P 328–8.107. Collins KK, Rhee EK, Kirsh JA, Cannon BC, Fish FA, Dubin AM, Van Hare GF. Cryoablation of accessory pathways in the coronary sinus in young patients: a multicenter study from the Pediatric and Congenital Electrophysiology Society’s Working Group on Cryoablation. J Cardiovasc Electrophysiol –597.108. Kirsh JA, Gross GJ, O’Connor S, Hamilton RM. Transcatheter cryoablation of tachyarrhythmias in children: initial experience from an international registry. J Am Coll Cardiol –136.109. Kriebel T, Broistedt C, Kroll M, Sigler M, Paul T. Efficacy and safety of cryoenergy in the ablation of atrioventricular reentrant tachycardia substrates in children and adolescents. J Cardiovasc Electrophysiol
–966.110. Bar-Cohen Y, Cecchin F, Alexander ME, Berul CI, Triedman JK, Walsh EP. Cryoablation for accessory pathways located near normal conduction tissues or within the coronary venous system in children and young adults. Heart Rhythm –258.111. Tuzcu V. Cryoablation of accessory pathways in children. Pacing Clin Electrophysiol 9 –1135.112. Avari JN, Jay KS, Rhee EK. Experience and results during transition from radiofrequency ablation to cryoablation for treatment of pediatric atrioventricular nodal reentrant tachycardia. Pacing Clin Electrophysiol –460.113. Atienza F, Arenal A, Torrecilla EG, Garcia-Alberola A, Jimenez J, Ortiz M, Puchol A, Almendral J. Acute and long-term outcome of transvenous cryoablation of midseptal and parahissian accessory pathways in patients at high risk of atrioventricular block during radiofrequency ablation. Am J Cardiol 2–1305.114. Drago F, Silvetti MS, De Santis A, Grutter G, Andrew P. Lengthier cryoablation and a bonus cryoapplication is associated with improved efficacy for cryothermal catheter ablation of supraventricular tachycardias in children. J Interv Card Electrophysiol –198.115. Gist KM, Bockoven JR, Lane J, Smith G, Clark JM. Acute success of cryoablation of left-sided accessory pathways: a single institution study. J Cardiovasc Electrophysiol – 642.116. Sacher F, Wright M, Tedrow UB, O’Neill MD, Jais P, Hocini M, Macdonald R, Davies DW, Kanagaratnam P, Derval N, Epstein L, Peters NS, Stevenson WG, Haissaguerre M. Wolff-Parkinson-White ablation after a prior failure: a 7-year multicentre experience. Europace – 841.117. Manolis AS, Melita-Manolis H, Vassilikos V, Maounis T, Chiladakis J, Christopoulou-Cokkinou V, Cokkinos DV. Thrombogenicity of radiofrequency lesions:results with serial D-dimer determinations. J Am Coll Cardiol 7–1261.118. Lee DS, Dorian P, Downar E, Burns M, Yeo EL, Gold WL, Paquette M, Lau W, Newman DM. Thrombogenicity of radiofrequency ablation procedures:what factors influence thrombin generation? Europace –200.119. Khairy P, Chauvet P, Lehmann J, Lambert J, Macle L, Tanguay JF, Sirois MG, Santoianni D, Dubuc M. Lower incidence of thrombus formation with cryoenergy versus radiofrequency catheter ablation. Circulation 5–2050.120. Zhou L, Keane D, Reed G, Ruskin J. Thromboembolic complications of cardiac radiofrequency catheter ablation: a review of the reported incidence, pathogenesis and current research directions. J Cardiovasc Electrophysiol – 620.121. Epstein MR, Knapp LD, Martindill M, Lulu JA, Triedman JK, Calkins H, Huang SK, Walsh EP, Saul JP. Embolic complications associated with radiofrequency catheter ablation. Atakr Investigator Group. Am J Cardiol –658.122. Blaufox AD, Paul T, Saul JP. Radiofrequency catheter ablation in small children: relationship of complications to application dose. Pacing Clin Electrophysiol
–229.123. Bertram H, Bokenkamp R, Peuster M, Hausdorf G, Paul T. Coronary artery stenosis after radiofrequency catheter ablation of accessory atrioventricular pathways in children with Ebstein’s malformation. Circulation –543.124. Paul T, Bokenkamp R, Mahnert B, Trappe HJ. Coronary artery involvement early and late after radiofrequency current application in young pigs. Am Heart J –440.125. Chatelain P, Zimmermann M, Weber R, Campanini C, Adamec R. Acute coronary occlusion secondary to radiofrequency catheter ablation of a left lateral accessory pathway. Eur Heart J –861.126. Khanal S, Ribeiro PA, Platt M, Kuhn MA. Right coronary artery occlusion as a complication of accessory pathway ablation in a 12–year-old treated with stenting. Catheter Cardiovasc Interv –61.127. Benito F, Sanchez C. Radiofrequency catheter ablation of accessory pathways in infants. Heart
–162.128. Solomon AJ, Tracy CM, Swartz JF, Reagan KM, Karasik PE, Fletcher RD. Effect on coronary artery anatomy of radiofrequency catheter ablation of atrial insertion sites of accessory pathways. J Am Coll Cardiol 0 –1444.129. Calkins H, Langberg J, Sousa J, el-Atassi R, Leon A, Kou W, Kalbfleisch S, Morady F. Radiofrequency catheter ablation of accessory atrioventricular connections in 250 patients. Abbreviated therapeutic approach to Wolff-Parkinson-White syndrome. Circulation 7–1346.130. Bokenkamp R, Wibbelt G, Sturm M, Windhagen-Mahnert B, Bertram H, Hausdorf G, Paul T. Effects of intracardiac radiofrequency current application on coronary artery vessels in young pigs. J Cardiovasc Electrophysiol –571.131. Aoyama H, Nakagawa H, Pitha JV, Khammar GS, Chandrasekaran K, Matsudaira K, Yagi T, Yokoyama K, Lazzara R, Jackman WM. Comparison of cryothermia and radiofrequency current in safety and efficacy of catheter ablation within the canine coronary sinus close to the left circumflex coronary artery. J Cardiovasc Electrophysiol 8 –1226.132. Schneider HE, Kriebel T, Gravenhorst VD, Paul T. Incidence of coronary artery injury immediately after catheter ablation for supraventricular tachycardias in infants and children. Heart Rhythm – 467.133. Al-Ammouri I, Perry JC. Proximity of coronary arteries to the atrioventricular valve annulus in young patients and implications for ablation procedures. Am J Cardiol 2–1755.134. Schaffer MS, Gow RM, Moak JP, Saul JP. Mortality following radiofrequency catheter ablation (from the Pediatric Radiofrequency Ablation Registry). Participating members of the Pediatric Electrophysiology Society. Am J Cardiol –643.135. Pressley JC, Wharton JM, Tang AS, Lowe JE, Gallagher JJ, Prystowsky EN. Effect of Ebstein’s anomaly on short- and long-term outcome of surgically treated patients with Wolff-Parkinson-White syndrome. Circulation 7–1155.136. Delhaas T, Sarvaas GJ, Rijlaarsdam ME, Strengers JL, Eveleigh RM, Poulino SE, de Korte CL, Kapusta L. A multicenter, long-term study on arrhythmias in children with Ebstein anomaly. Pediatr Cardiol
–233.137. Levine JC, Walsh EP, Saul JP. Radiofrequency ablation of accessory pathways associated with congenital heart disease including heterotaxy syndrome. Am J Cardiol –693.138. Reich JD, Auld D, Hulse E, Sullivan K, Campbell R. The Pediatric Radiofrequency Ablation Registry’s experience with Ebstein’s anomaly. Pediatric Electrophysiology Society. J Cardiovasc Electrophysiol 0 –1377.139. Sternick EB, Oliva A, Magalhaes LP, Gerken LM, Hong K, Santana O, Brugada P, Brugada J, Brugada R. Familial pseudo-Wolff-Parkinson-White syndrome. J Cardiovasc Electrophysiol
–732.140. Gollob MH, Seger JJ, Gollob TN, Tapscott T, Gonzales O, Bachinski L, Roberts R. Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation 0 –3033.141. Sternick EB, Rodriguez LM, Timmermans C, Sosa E, Cruz FE, Gerken LM, Fagundes M, Scanavacca M, Wellens HJ. Effects of right bundle branch block on the antidromic circus movement tachycardia in patients with presumed atriofascicular pathways. J Cardiovasc Electrophysiol
–260.142. Brown RT, Freeman WS, Perrin JM, Stein MT, Amler RW, Feldman HM, Pierce K, Wolraich ML. Prevalence and assessment of attention-deficit/hyperactivity disorder in primary care settings. Pediatrics .143. Clinical practice guideline: treatment of the school-aged child with attentiondeficit/hyperactivity disorder. Pediatrics 3–1044.144. Samuels JA, Franco K, Wan F, Sorof JM. Effect of stimulants on 24–h ambulatory blood pressure in children with ADHD: a double-blind, randomized, cross-over trial. Pediatr Nephrol –95.145. Biederman J, Lopez FA, Boellner SW, Chandler MC. A randomized, doubleblind, placebo-controlled, parallel-group study of SLI381 (Adderall XR) in children with attention-deficit/hyperactivity disorder. Pediatrics –266.146. Habel LA, Cooper WO, Sox CM, Chan KA, Fireman BH, Arbogast PG, Cheetham TC, Quinn VP, Dublin S, Boudreau DM, Andrade SE, Pawloski PA, Raebel MA, Smith DH, Achacoso N, Uratsu C, Go AS, Sidney S, Nguyen-Huynh MN, Ray WA, Selby JV. ADHD medications and risk of serious cardiovascular events in young and middle-aged adults. JAMA 3–2683.147. Harris KM, Sponsel A, Hutter AM Jr, Maron BJ. Brief communication: cardiovascular screening practices of major North American professional sports teams. Ann Intern Med –511.148. Corrado D, Basso C, Schiavon M, Thiene G. Screening for hypertrophic cardiomyopathy in young athletes. N Engl J Med
–369.149. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, . Circulation 5–1092.150. Wiedermann CJ, Becker AE, Hopferwieser T, Muhlberger V, Knapp E. Sudden death in a young competitive athlete with Wolff-Parkinson-White syndrome.Eur Heart J – 655.151. Mezzani A, Giovannini T, Michelucci A, Padeletti L, Resina A, Cupelli V, Musante R. Effects of training on the electrophysiologic properties of atrium and accessory pathway in athletes with Wolff-Parkinson-White syndrome. Cardiology –302.152. Pelliccia A, Zipes DP, Maron BJ. Bethesda Conference #36 and the European Society of Cardiology Consensus Recommendations revisited a comparison of U.S. and European criteria for eligibility and disqualification of competitive athletes with cardiovascular abnormalities. J Am Coll Cardiol 0–1996.153. Corrado D, Pelliccia A, Bjornstad HH, Vanhees L, Biffi A, Borjesson M, Panhuyzen-Goedkoop N, Deligiannis A, Solberg E, Dugmore D, Mellwig KP, Assanelli D, Delise P, van-Buuren F, Anastasakis A, Heidbuchel H, Hoffma, nn E, Fagard R, Priori SG, Basso C, Arbustini E, Blomstrom-Lundqvist C, McKenna WJ, Thiene G. Cardiovascular pre-participationscreening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardialand Pericardial Diseases of the European Society of Cardiology. Eur Heart J
–524.154. Vetter VL, Elia J, Erickson C, Berger S, Blum N, Uzark K, Webb CL. Cardiovascular monitoring of children and adolescents with heart disease receiving medications for attention deficit/hyperactivity disorder [corrected]: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young Congenital Cardiac Defects Committee and the Council on Cardiovascular Nursing. Circulation 7–2423.155. Berkman NL, Lamb LE. The Wolff–Parkinson–White Electrocardiogram. New England Journal of Medicine, – 494.156. Inoue K, et al. Long-term prospective study on the natural history of Wolff-Parkinson-White syndrome detected during a heart screening program at school. Acta P&diatrica, –545.157. Satoh M, et al. Electrophysiologic evaluation of asymptomatic patients with the Wolff-Parkinson-White pattern. Pacing Clin Electrophysiol, – 420.158. Pappone, et al. A randomized study of catheter ablation in asymptomatic patients with the Wolff-Parkinson-White syndrome. NEJM 3–1811.
365医学网—转载请注明出处}

我要回帖

更多关于 如何治疗狐臭 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信