微纳金属3d打印可以打印金属吗技术应用:AFM探针?

  微纳3D打印,更精准更宏观。
  
飞秒激光直写无机纳米结构的光场分布示意图。 (郑美玲提供)
  
飞秒激光被用于眼科手术治疗近视,已经为人熟知。
  
但它能做得远不止于此。飞秒激光直写作为一种有效的三维微纳精细加工技术,可以在多种透明光学材料中实现微小型光子学器件的制备。
  
中科院理化所仿生智能界面科学中心郑美玲团队在前期工作积累上,近日在不同期刊连发两篇相关成果,推动飞秒激光直写技术再向前一步。
  
《先进材料技术》:仿生响应型水凝胶微致动器
  
在以《飞秒激光微加工pH驱动三维仿捕蝇草水凝胶驱动器》为题发表在《先进材料技术》的成果中,该团队合成了刺激响应型光刻胶前驱体,并结合结构设计,采用飞秒激光直写技术制备了4D刺激响应型水凝胶微结构。
  
水凝胶微致动器在显微操作、微机器人、微流体、智能传感器等领域的应用非常重要。然而,要实现水凝胶微致动器在微纳尺度上的精确制备及可控操纵,仍存在巨大挑战。
  
作者利用刺激响应型光刻胶,通过优化飞秒激光直写参数及激光加工路径,获得了响应行为可控的4D水凝胶微结构。通过改变激光加工参数来调节水凝胶微结构局部区域的交联密度,从而获得可控的pH响应行为,变形时间短至1.2秒,恢复时间为0.3秒。
  
在此基础上,受捕蝇草捕获行为的启发,研究人员设计并加工了仿生不对称水凝胶微致动器,通过pH触发,实现和调节了其形状变化,成功地捕获了单个或多个微颗粒,并可控地实现了微颗粒的同时释放或顺次释放。
  
该成果使智能水凝胶微致动器的制备成为可能。
  
《自然—通讯》:使用近红外光进行3D无机材料的光刻微加工
  
另一篇发表于《自然—通讯》的文章《多光子三维光刻实现λ/30无机特征尺寸》,阐述了该团队与合作伙伴在飞秒激光超衍射纳米光刻技术制备3D无机纳米结构研究方面取得的进展。
  
激光3D打印技术是制备三维无机微结构的重要手段之一,但是在制备无机微结构时,其特征尺寸和加工分辨率受到材料和光学衍射极限的限制,难以实现纳米尺度制备。
  
该工作中,研究团队利用飞秒激光与物质的非线性相互作用,通过多光子吸收引起的雪崩电离效应,实现了无机光刻胶氢倍半硅氧烷(HSQ)的飞秒激光超衍射纳米光刻,突破了前人提出的HSQ无法使用可见和近红外光进行光刻微加工的局限。
  
作者系统研究了激光能量、扫描速度和扫描方式等加工参数对特征尺寸的影响规律,通过精细调节激光的加工参数,成功得到了自支撑的33纳米和26纳米HSQ纳米结构,实现了λ/30(激光波长1/30)的特征尺寸,并制备出了具有优异的耐高温和耐溶剂性能的3D无机微结构,构筑了多种基于无机纳米结构的光子学微器件和仿生微结构。
  
这项工作为基于HSQ微结构的新型无机纳米器件的研究奠定了坚实基础。
  
《纳米快讯》:实现跨尺度微纳复杂结构的新途径
  
微纳尺度上的3D打印可以实现任意三维,并且精度很高,但谈到这个技术到目前为止最大的遗憾,郑美玲告诉《中国科学报》,在工业中几乎没有做成过产品,因为这种技术制备大结构器件的效率很低。这也是该团队目前的一个研究方向。
  
在稍早些由《纳米快讯》发表的成果《无掩模光学投影纳米光刻实现λ/12超分辨率和高效跨尺度结构图案化》中,他们部分解决了这个痛点问题。
  
郑美玲团队与合作伙伴以波长为400纳米的超快激光作为光源,利用数字微镜芯片(DMD)生成图案化光场,发展了无掩模光学投影超衍射纳米光刻技术,突破光学衍射极限的限制,获得了仅为激光波长1/12(λ/ 12)的32 纳米光刻线宽,高效制备了数百微米尺度与纳米尺度并存的跨尺度微纳结构。
  
此外,通过计算机控制更改所需的DMD生成图案化光场,便捷实现了多种跨尺度微纳结构图案制备,经过简单重复该过程,还可以实现多样化图形的批量制备。
  
无掩模光学投影超衍射纳米光刻技术,为跨尺度微纳复杂结构图案化提供了高效、便捷的新技术途径,有望在涉及电子、光学和生物等领域的微纳米器件的研究与开发中得到广泛应用,并实现定制化微纳结构与器件的低成本、高效率、批量制造。期刊审稿人评价该技术为真正开创性的成果。(来源:中国科学报张楠)
  
相关论文信息:
  
https://doi.org/10.1002/admt.202200276
  
https://doi.org/10.1038/s41467-022-29036-7
  
https://doi.org/10.1021/acs.nanolett.1c00559
   版权声明:凡本网注明来源:中国科学报、科学网、科学新闻杂志的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。
作者:郑美玲等 来源:《先进材料技术》
}

0
分享至
用微信扫码二维码分享至好友和朋友圈近日,广东石油化工学院环境催化团队的李泽胜副教授在国际权威期刊《Advanced Functional Materials》(一区Top,影响因子18.808)以”Constructing Flexible All-Solid-State Supercapacitors from 3D Nanosheets Active Bricks via 3D Manufacturing Technology: A Perspective Review”为题,发表前景展望综述。广东石油化工学院为论文第一完成单位,化学学院李泽胜副教授为论文第一通讯作者,化学工程学院李泊林博士为论文第一作者,广西师范大学李庆余教授为第二通讯作者。论文链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202201166由于分级3D纳米片独特的几何特性和电子结构,它们表现出优异的电子迁移率、超高的比表面积和可靠的结构稳定性。因此,3D纳米片在电化学储能领域具有很大的应用前景。近年来,超级电容器以其充放电快、循环寿命长、安全稳定等优点引起了广泛关注。柔性化、小型化、智能化集成是超级电容储能器件的发展方向。新兴的3D打印技术,尤其是墨水直写模式,极大地提高了器件微结构的设计能力和控制精度。本文基于作者或其他团队前期对3D石墨烯纳米片和3D MXene纳米片的研究进展,提出利用先进的3D打印技术,利用活性3D纳米片实现柔性全固态超级电容器的设计。具有高比电容的材料。系统分析了叉指电极、多层骨架电极和纤维电极3D打印技术的设计方法以及柔性超级电容器的性能评估。本综述旨在为未来柔性全固态超级电容器的实际应用提供3D打印3D纳米片构建材料的设计、制备和性能优化的新概念和理论指导。本文提出利用先进的3D打印技术,利用具有高比电容的3D纳米片活性材料,实现柔性全固态超级电容器的设计。系统分析了叉指电极、多层骨架电极和纤维电极3D打印技术的设计方法以及柔性超级电容器的性能评估。图1:本综述的大纲插图随着个性化柔性电子产品(如柔性显示、植入式医疗、可穿戴电子设备)的兴起,对轻、薄、柔性的便携式储能设备的需求变得越来越迫切和尤为重要。作为柔性储能器件的重要组成部分,柔性超级电容器以其充放电速度快(即功率密度高)、循环寿命长、体积小、效率高、和很强的灵活性。特别是柔性全固态超级电容器可以保证在许多机械变形(弯曲、折叠、扭转、压缩或拉伸)和无数次重复变形下持续稳定的能量输出。这些优势确保了柔性全固态超级电容器是未来大多数柔性电子设备的良好且有前途的替代能源供应装置。目前,关于3D纳米片电极材料的设计和超级电容器的应用,评论层出不穷。最近,还发表了几篇关于 3D 打印技术在柔性超级电容器中应用的总结著作。这些综述分别为3D电极和柔性器件的设计提供了积极的指导意义。然而,3D纳米片材料和3D打印技术在柔性全固态超级电容器中的共同总结和展望却很少见。在这篇综述论文中,我们讨论了通过 3D 打印技术(或一些非打印技术)从 3D 纳米片(作为微电极的活性砖)构建柔性全固态超级电容器。本综述的主要内容包括:1)介绍了3D纳米片材料的基本类别和制备方法,总结了高性能电极材料的一般设计原则;2)基于针对性的设计案例,总结了3D石墨烯、3D MXene等3D纳米片的最新制备和应用进展;3)系统总结了基于3D打印技术(或其他技术)的3D纳米片多样化电极(微交叉电极、多层骨架电极、类纤维电极)的设计策略和全固态超级电容器应用;4)最后,我们还讨论了3D打印技术在基于3D纳米片的柔性全固态超级电容器的挑战和机遇。图2典型的 3D 石墨烯纳米片:A-D)树脂前体热解的 3D 石墨烯网络,E-H)氧化石墨热解的 3D 石墨烯网络,I-L)吐温前体化学活化的 3D 类石墨烯多面体,M-P ) 通过甘蔗渣前体的模板催化制备 3D 类石墨烯纳米笼。图3基于 3D 打印技术 (DIW) 的叉指电极设计:A) 采用 VN/GO 和 V 2 O 5 /GO 墨水的不对称电极,B) 采用 MXene/金属纳米线墨水的对称电极,C) 采用 MXene/碳纳米纤维墨水的对称电极, D) 具有单一 MXene 墨水的对称电极,E-G) 具有 MoS 2和 rGO 墨水的不对称电极(喷墨打印)。图4基于3D打印技术的多层骨架电极设计(DIW): (A)对称电极与氧化石墨烯墨水,(B和C)非对称电极与MXene和AC墨水,(D和E)全3D打印全碳凝胶超级电容器。图5典型的光纤电化学器件: (A)平行双纤模式,(B)扭曲双纤模式,(C-E)双层同轴光纤模式; 典型的3d打印光纤超级电容器:(F和G)多层同轴光纤超级电容器,(H)方截面光纤超级电容器。总结:在超级电容器领域,各种 3D 纳米片构建材料(包括 3D 纳米片粉末、3D 纳米片薄膜和 3D 纳米片气凝胶)已被广泛设计和制备,以提高电化学储能效率。在 3D 纳米片材料(如 3D 石墨烯和 3D MXene 纳米片)的制备中,模板法是最广泛的制备方法,包括固体球形模板(二氧化硅球和聚合物球)和原位模板(自发冰或定向冰晶)。3D打印技术(如DIW)可以实现不同尺寸的多孔电极(如叉指电极、多层骨架电极、纤维电极)的有效设计,其中,多孔电极中离子和电荷转移效率的显着提高有效地提高了电容器在高负载下的倍率性能。3D 打印技术在利用 3D 纳米片构建的电极材料设计柔性固态超级电容器方面显示出广阔的前景。此外,3D打印技术为引入电极设计等赝电容活性材料、精确调控其负载量和空间分布提供了极大便利,为开发具有超高能量密度的非对称超级电容器材料提供了新途径。在这篇综述论文中,为了进一步提高全固态超级电容器的实际器件能量密度,我们提出构建可压缩气凝胶电极(即多孔骨架木桩电极),通过 3D 制造技术(3D 打印技术或其他技术),由高电容 3D 纳米片活性砖(例如,3D 石墨烯、3D MXene 或其他金属 3D 纳米片)制成的紧凑型叉指电极、可穿戴纤维电极和柔性薄膜电极粉末)。目前,3D 打印技术已经从一些 3D 纳米片粉末材料(例如,MXene 和 MoS2 3D 纳米片粉末)用于全固态柔性或微型超级电容器。同时,通过超高比表面积“3-D 活化石墨烯纳米片”3D 打印电极设计柔性全固态超级电容器似乎更可取和有吸引力。此外,我们还提出了不对称水性全固态柔性超级电容器和非水性全固态柔性超级电容器的有前景的设计,以实现更高的电压窗口和更高的能量密度。*感谢论文作者团队对本文的大力支持。本文来自微信公众号“材料科学与工程”。欢迎转载请联系,未经许可谢绝转载至其他网站。特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.相关推荐热点推荐
2024-01-26 02:42:44
}

我要回帖

更多关于 AFM探针 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信