一直有个疑问,光的传播 课件速度是最快的,眼...

光的传播速度最早测试_百度知道
光的传播速度最早测试
如题,要求具体说明。需要配有文献资料说明。好的+分
就是说明谁谁谁,是怎么样发明的
提问者采纳
光的传播速度好像不是发明的,是发现的吧! 最早提出来的是伽利略
书上也没说到底他怎么发现的,只是说他做了一个实验,自己看看下面的,你可能就知道你的答案了!详细资料如下: 光速是物理学中最重要的基本常数之一,也是所有各种频率的电磁波在真空中的传播速度.狭义相对论认为:任何信号和物体的速度都不能超过真空中的光速.在折射率为n的介质中,光的传播速度为:v=c/n.在光学和物理学的发展历史上,光速的测定,一直是许多科学家为之探索的课题.许多光速测量方法那巧妙的构思、高超的实验设计一直在启迪着后人的物理学研究.历史上光速测量方法可以分为天文学测量方法、大地测量方法和实验室测量方法等 一、光速测定的天文学方法 1.罗默的卫星蚀法 光速的测量,首先在天文学上获得成功,这是因为宇宙广阔的空间提供了测量光速所需要的足够大的距离.早在1676年丹麦天文学家罗默()首先测量了光速.由于任何周期性的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的“时钟”,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的周期不大(约为1.75天),所以上述时间差数,在最合适的时间(上图中地球运行到轨道上的A和A’两点时)不致超过15秒(地球的公转轨道速度约为30千米/秒).因此,为了取得可靠的结果,当时的观察曾在整年中连续地进行.罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速.由于当时只知道地球轨道半径的近似值,故求出的光速只有214300km/s.这个光速值尽管离光速的准确值相差甚远,但它却是测定光速历史上的第一个记录.后来人们用照相方法测量木星卫星蚀的时间,并在地球轨道半径测量准确度提高后,用罗默法求得的光速为km/s. 2.布莱德雷的光行差法 1728年,英国天文学家布莱德雷()采用恒星的光行差法,再一次得出光速是一有限的物理量.布莱德雷在地球上观察恒星时,发现恒星的视位置在不断地变化,在一年之内,所有恒星似乎都在天顶上绕着半长轴相等的椭圆运行了一周.他认为这种现象的产生是由于恒星发出的光传到地面时需要一定的时间,而在此时间内,地球已因公转而发生了位置的变化.他由此测得光速为: C=299930千米/秒 这一数值与实际值比较接近. 以上仅是利用天文学的现象和观察数值对光速的测定,而在实验室内限于当时的条件,测定光速尚不能实现. 二、光速测定的大地测量方法 光速的测定包含着对光所通过的距离和所需时间的量度,由于光速很大,所以必须测量一个很长的距离和一个很短的时间,大地测量法就是围绕着如何准确测定距离和时间而设计的各种方法. 1.伽利略测定光速的方法 物理学发展史上,最早提出测量光速的是意大利物理学家伽利略.1607年在他的实验中,让相距甚远的两个观察者,各执一盏能遮闭的灯,如图所示:观察者A打开灯光,经过一定时间后,光到达观察者B,B立即打开自己的灯光,过了某一时间后,此信号回到A,于是A可以记下从他自己开灯的一瞬间,到信号从B返回到A的一瞬间所经过的时间间隔t.若两观察者的距离为S,则光的速度为 c=2s/t 因为光速很大,加之观察者还要有一定的反应时间,所以伽利略的尝试没有成功.如果用反射镜来代替B,那么情况有所改善,这样就可以避免观察者所引入的误差.这种测量原理长远地保留在后来的一切测定光速的实验方法之中.甚至在现代测定光速的实验中仍然采用.但在信号接收上和时间测量上,要采用可靠的方法.使用这些方法甚至能在不太长的距离上测定光速,并达到足够高的精确度. 2.旋转齿轮法 用实验方法测定光速首先是在1849年由斐索实验.他用定期遮断光线的方法(旋转齿轮法)进行自动记录.实验示意图如下.从光源s发出的光经会聚透镜L1射到半镀银的镜面A,由此反射后在齿轮W的齿a和a’之间的空隙内会聚,再经透镜L2和L3而达到反射镜M,然后再反射回来.又通过半镀镜A由L4集聚后射入观察者的眼睛E.如使齿轮转动,那么在光达到M镜后再反射回来时所经过的时间△t内,齿轮将转过一个角度.如果这时a与a’之间的空隙为齿a(或a’)所占据,则反射回来的光将被遮断,因而观察者将看不到光.但如齿轮转到这样一个角度,使由M镜反射回来的光从另一齿间空隙通过,那么观察者会重新看到光,当齿轮转动得更快,反射光又被另一个齿遮断时,光又消失.这样,当齿轮转速由零而逐渐加快时,在E处将看到闪光.由齿轮转速v、齿数n与齿轮和M的间距L可推得光速c=4nvL. 在斐索所做的实验中,当具有720齿的齿轮,一秒钟内转动12.67次时,光将首次被挡住而消失,空隙与轮齿交替所需时间为 在这一时间内,光所经过的光程为2×8633米,所以光速c=2×=3.15×108(m/s). 在对信号的发出和返回接收时刻能作自动记录的遮断法除旋转齿轮法外,在现代还采用克尔盒法.1941年安德孙用克尔盒法测得:c=km/s,1951年贝格斯格兰又用克尔盒法测得c=±0.3km/s. 3.旋转镜法 旋转镜法的主要特点是能对信号的传播时间作精确测量.1851年傅科成功地运用此法测定了光速.旋转镜法的原理早在年就已为惠更斯和阿拉果提出过,它主要用一个高速均匀转动的镜面来代替齿轮装置.由于光源较强,而且聚焦得较好.因此能极其精密地测量很短的时间间隔.实验装置如图所示.从光源s所发出的光通过半镀银的镜面M1后,经过透镜L射在绕O轴旋转的平面反射镜M2上O轴与图面垂直.光从M2反射而会聚到凹面反射镜M3上,M3的曲率中心恰在O轴上,所以光线由M3对称地反射,并在s′点产生光源的像.当M2的转速足够快时,像S′的位置将改变到s〃,相对于可视M2为不转时的位置移动了△s的距离可以推导出光速值: 式中w为M2转动的角速度.l0为M2到M3的间距,l为透镜L到光源S的间距,△s为s的像移动的距离.因此直接测量w、l、l0、△s,便可求得光速. 在傅科的实验中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=0km/s. 另外,傅科还利用这个实验的基本原理,首次测出了光在介质(水)中的速度v<c,这是对波动说的有力证据. 3.旋转棱镜法 迈克耳逊把齿轮法和旋转镜法结合起来,创造了旋转棱镜法装置.因为齿轮法之所以不够准确,是由于不仅当齿的中央将光遮断时变暗,而且当齿的边缘遮断光时也是如此.因此不能精确地测定象消失的瞬时.旋转镜法也不够精确,因为在该法中象的位移△s太小,只有0.7毫米,不易测准.迈克耳逊的旋转镜法克服了这些缺点.他用一个正八面钢质棱镜代替了旋转镜法中的旋转平面镜,从而光路大大的增长,并利用精确地测定棱镜的转动速度代替测齿轮法中的齿轮转速测出光走完整个路程所需的时间,从而减少了测量误差.从1879年至1926年,迈克耳逊曾前后从事光速的测量工作近五十年,在这方面付出了极大的劳动.1926年他的最后一个光速测定值为 c=299796km/s 这是当时最精确的测定值,很快成为当时光速的公认值. 三、光速测定的实验室方法 光速测定的天文学方法和大地测量方法,都是采用测定光信号的传播距离和传播时间来确定光速的.这就要求要尽可能地增加光程,改进时间测量的准确性.这在实验室里一般是受时空限制的,而只能在大地野外进行,如斐索的旋轮齿轮法当时是在巴黎的苏冷与达蒙玛特勒相距8633米的两地进行的.傅科的旋转镜法当时也是在野外,迈克耳逊当时是在相距35373.21米的两个山峰上完成的.现代科学技术的发展,使人们可以使用更小更精确地实验仪器在实验室中进行光速的测量. 1.微波谐振腔法 1950年埃森最先采用测定微波波长和频率的方法来确定光速.在他的实验中,将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2.404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10-7.在埃森的实验中,所用微波的波长为10厘米,所得光速的结果为±1km/s. 2.激光测速法 1790年美国国家标准局和美国国立物理实验室最先运用激光测定光速.这个方法的原理是同时测定激光的波长和频率来确定光速(c=νλ).由于激光的频率和波长的测量精确度已大大提高,所以用激光测速法的测量精度可达10-9,比以前已有最精密的实验方法提高精度约100倍. 四、光速测量方法一览表 除了以上介绍的几种测量光速的方法外,还有许多十分精确的测定光速的方法.现将不同方法测定的光速值列为“光速测量一览表”供参考. 根据1975年第十五届国际计量大会的决议,现代真空中光速的最可靠值是: c=±0.001km/s 声速测量仪必须配上示波器和信号发生器才能完成测量声速的任务。实验中产生超声波的装置如图所示。它由压电陶瓷管或称超声压电换能器与变幅杆组成;当有交变电压加在压电陶瓷管上时,由于压电体的逆压电效应,使其产生机械振动。此压电陶瓷管粘接在铝合金制成的变幅杆上,经过电子线路的放大,即成为超声波发生器,由于压电陶瓷管的周期性振动,带动变幅杆也做周期轴向振动。当所加交变电压的频率与压电陶瓷的固有频率相同时,压电陶瓷的振幅最大,这使得变幅杆的振幅也最大。变幅杆的端面在空气中激发出纵波,即超声波。本仪器的压电陶瓷的振荡频率在40kHz以上,相应的超声波波长约为几毫米,由于他的波长短,定向发射性能好,本超声波发射器是比较理想的波源。由于变幅杆的端面直径一般在20mm左右,比此波长大很多,因此可以近似认为离开发射器一定距离处的声波是平面波。超声波的接受器则是利用压电体的正压电效应,将接收的机械振动,转化成电振动,为使此电振动增强。特加一选频放大器加以放大,再经屏蔽线输给示波器观测。接收器安装在可移动的机构上,这个机构包扩支架、丝杆、可移动底座(其上装有指针,并通过定位螺母套在丝杆上,有丝杆带动作平移)、带刻度的手轮等。接收器的位置由主、尺刻度手轮的位置决定。主尺位于底座上面;最小方尺位于底坐上面;最小分尺为1mm,手轮与丝杆相连上分为100分格,每转一周,接收器平移1mm,故手每一小格为0.01mm,可估到0.001mm。
提问者评价
其他类似问题
为您推荐:
光的传播的相关知识
其他1条回答
1.罗默的卫星蚀法
光速的测量,首先在天文学上获得成功,这是因为宇宙广阔的空间提供了测量光速所需要的足够大的距离.早在1676年丹麦天文学家罗默()首先测量了光速.由于任何周期性的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的“时钟”,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的...
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁下列关于光的传播的说法中,正确的是(  )A.光的传播速度是3×108m/sB.光的传播速度在玻璃中最快C._百度知道
下列关于光的传播的说法中,正确的是(  )A.光的传播速度是3×108m/sB.光的传播速度在玻璃中最快C.
下列关于光的传播的说法中,正确的是(  )A.光的传播速度是3×108m/sB.光的传播速度在玻璃中最快C.光的传播不需要介质D.光年是一个时间单位
提问者采纳
A、光在不同的介质中传播速度不同,在真空中传播速度最大,在其它介质中的传播速度都比真空中的要小,该选项说法不正确;B、光的传播速度在真空中最快,该选项说法错误;C、光的传播不需要介质,它可以在真空中传播,该选项说法正确;D、光年是天文学上的长度单位,指光在一年内经过的距离,该选项说法不正确.故选C.
其他类似问题
为您推荐:
光的传播的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁一直有个疑问 假设有一个周长三十多万公里的圆形墙壁 圆心上有个激光源照在墙上 当光源以每秒一圈以上的速度旋转时 墙上的光斑的线速度应该大于光速 可实际上光速是不能超越的 那么_百度作业帮
一直有个疑问 假设有一个周长三十多万公里的圆形墙壁 圆心上有个激光源照在墙上 当光源以每秒一圈以上的速度旋转时 墙上的光斑的线速度应该大于光速 可实际上光速是不能超越的 那么
一直有个疑问 假设有一个周长三十多万公里的圆形墙壁 圆心上有个激光源照在墙上 当光源以每秒一圈以上的速度旋转时 墙上的光斑的线速度应该大于光速 可实际上光速是不能超越的 那么这时这个光斑应该是什么状态 描述的不太好 大概就是这个意思好吧2744242 我把光源光斑什么的换成个链球 其它条件不变 我知道它不会超光速 只是想不出它到底怎么运动的
你是想说光斑超光速运动?事实上,根本不存在超光速运动,这也不是一个超光速运动,尽管你感觉到它是超光速的,那个被推荐的答案,我简直感觉莫名其妙,其关于发现超光速运动的例子不知哪来的,就连上次中微子超光速也被证明错误,如此权威的机构都没给出这种说法.还有什么传递信息与光速什么的,从未听说过.定义 什么是运动,运动必须有运动的物体,位移,和时间,而且位移必须是连续的.你不能说一个物体消失了,然后在另一个位置用其它物体代替它,然后把这段距离当成位移.这里也一样啊,分析一下运动的本质就知道这里有没有运动的物体?光斑?开玩笑,光斑只是光子(物体)打在墙壁上反射过来被肉眼捕捉到的东西,你肉眼看到光斑在动,那么它能叫一个物体在动吗?严格意义上,光子打在不同的位置根本就不是连续的,也就是说,微观意义上,你所谓的“光斑”的“运动”也是不连续的,这连运动都称不上,哪来超光速运动?好的楼主,如果你把光斑换成链球,那么链球绝对不会超光速,这是肯定的,也就意味着你无论如何,转速也达不到那么大,这是在绳子的质量忽略的情况下,而一旦绳子有了质量,那么就更奇妙了,你站在地面参考系中,发现它根本不是一条直线(没有相对论效应也一样) .反正有了质量后,你转速越大加速会越来越困难,这限制着你达不到预期转速!
这个问题涉及到光速不变问题,涉及到狭义相对论,薛定谔的微观测不准原理等等问题,没法简单解释。
光斑不传递信息,所以光斑的超光速与相对论不冲突。超光速的东西其实很多,但就目前所发现的超高速无一例外都不能超光速传递信息。
其实任何一个科学都不会是绝对的真理,虽然我在初二曾经推导出V小于等于C的公式(当然也花了很多时间废了很多纸)不过我依然肯定着只要是公式就一定会有打破的一天,就比方说改变了世界的经典力学,有些公式很容易的就可以看出不完善(任何都无极限)。...一直有个疑问,即时战略游戏里的地图如果按照实际大小做的话,怎么可能在很短时间把整个地图转遍_百度知道
一直有个疑问,即时战略游戏里的地图如果按照实际大小做的话,怎么可能在很短时间把整个地图转遍
意思就是如果按实际比例做的地图,从地图的一端到另一端也就是从自己的大本营到敌方的大本营怎么可能只要短短几秒钟的时间,现实中人在借助交通工具的情况下在短短几秒钟内所能到的地方也很有限,就比如红色警戒2,游戏里面的对战地图看似都好像是一座城市,或者是一个岛屿,但是当你在玩的时候操纵己方单位探索地图时只要一分钟不到就能把整个地图都探索完,而这样的话在实际中是不可能的,所以我想问即时战略游戏的地图还有里面的单位到底是不是按照实际大小做的
提问者采纳
限于当时的制作能力有限,游戏的地图不可能做得很大而且红色警戒2的单位大小和游戏中的建筑大小是不成比例的(用眼睛就看得出来)最重要的一点,一旦电脑配置上去了,红色警戒2如果开游戏速度无限制那是会飞起来的= =因此在冲突时出现一分钟转完地图的事情很常见,这样的情况在后来的RTS游戏中得到了一些改观。在这一方面做的比较好的是冲突世界(world in confict),基于游戏显示引擎的改进这款游戏在反映实时战略方面做得比较好,但从实际意义上而言它并不能算真正的RTS游戏(没有资源采集的环节)如果有兴趣可以查查看英雄连(company of heroes)也是个很好的例子,小规模战斗使得它的真实性得到了最大幅度的体现总结:RTS游戏在很多时候是很难做到全尺寸即时战略的,因此出现单位大小比例失调的情况很正常。狭义的即时战略游戏模拟的是整个军队的对决,如果分的太细的话对系统配置要求很高的同时也会降低游戏体验(试想一下给战场上100辆坦克分别下达命令的痛苦)我上面举的两个例子都反映了局部作战——专注战场的一方面来提高真实感随着信息技术的发展和电脑配置的提高,我想越来越真实的RTS游戏是会出现的不过游戏本来就是用来娱乐的,追求画质和顿时的爽快感,如果非得强求真实反而失去了它的娱乐性。单人控制的大军使它注定不能全部模拟真实战斗,从模型大小和时间轴上都是如此希望我的回答能帮到你
我就是现在有种被蒙骗的感觉,以前我一直没有意识到这个问题,现在意识到了就感觉被骗了一样,我以前玩的时候都是觉得是真的才去玩的
没办法,如果人人的电脑都像在研究院和大学里的超级计算机那样宇宙都能模拟,模拟一个战争又有何困难?可那样就失去了游戏的娱乐本质了
提问者评价
感谢网友的回答
其他类似问题
为您推荐:
其他3条回答
各个游戏都考虑到了“游戏性”,游戏性决定了一款游戏对玩家的吸引程度!如果什么都追求真实,那么这款游戏就没有人去玩了。
你不都知道了吗,还问什么
网友你是说即时战略游戏里的单位和地图都是按照一定比例缩小做的?
肯定不是嘛,想想都知道
那网友你怎么解释我上面说的问题
游戏就是为了满足人的意图,如果为了玩一场游戏还花了1个月,谁还会去玩呢?
游戏是仅供娱乐的
这位网友请你仔细思考一下我提出的问题,这个问题是我无意中想到的,因为我们在玩游戏的过程中都把游戏当做是一种对现实的模拟,然而当我想到了这个问题后发现其实游戏并不是我们所想的现实的模拟,而是一种伪现实,我们都被游戏所蒙蔽了
那我请问你,游戏制作出来是为了什么?是提供给了大家一个放松的渠道,并非让你沉迷其中,所以,既然对游戏是抱着随意的态度,干嘛一定要纠结其中呢!如果你是职业玩家,那就当我之前的话没讲,以上纯属个人观点!
即时战略游戏的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁}

我要回帖

更多关于 光的传播 课件 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信