m8怎么恢复出厂设置设置射频

htc m8怎样设置指纹解锁_百度知道
htc m8怎样设置指纹解锁
我有更好的答案
按默认排序
我教你,把后盖打开里面有
没有硬件支持你想多了
设置里面有
你又逗我了
开个玩笑被你识破了
只有面部解锁
其他类似问题
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁HTC M8怎么设置成中文?
我的手机开机之后变为英文了,请问怎么设置成中文呢
按菜单(menu)-设置(settings)-手机设置(phone setting或phone)-语言设置(language settings)(phone language)里面就有了 Automatic(随机自动),English这个不说了,然后简体中文繁体中文选择即可。
要回复问题请先或从阻抗匹配解析射频传输线技术-基础知识-RF技术社区
从阻抗匹配解析射频传输线技术
发布时间: 00:52:38
&&&&&&& 传输线设计是高频有线网络、射频微波工程、雷射光纤通信等光电工程的基础,为了能让能量可以在通信网路中无损耗地传输,良好的传输线设计是重要关键。&
&&&&&&& 无线通信加上视频技术将成为未来的明星产业,要达到这个目标,负责传送射频微波信号的介质除空气之外,就是高频的传输线。人类目前无法控制大气层,但是可以控制射频微波传输线,只要设法使通信网路的阻抗能相互匹配,发射能量就不会损耗。本文将从阻抗匹配的角度来解析射频微波传输线的设计技术。
驻波比(SWR)
&&&&&&& 两频率相同、振幅相近的电磁波能量流(energy flows)面对面地相撞(impinge)在一起,会产生驻波(standing wave),这种电磁波的能量粒子在空间中是处于静止(stand)状态(motionless)的,此暂停运动的时间长度比两电磁波能量流动的时间要长。因为驻波的能量粒子是静止不动的,所以,没有能量流进驻波或从驻波流出来。上述叙述较抽象,但是这里举个类似的例子,就可说明什么是驻波:做个物理实验,将两个口径、流速都相同的水管,面对面相喷,在两水管之间将会激起一个上下飞奔的水柱,这个水柱就是驻波。如果是在无地心引力的空间中,这个水柱将静止在那里不会坠地。&
&&&&&&& 电磁波在传输在线流动,入射波和反射波相遇时就会产生驻波。驻波比(standing wave rate;SWR)是驻波发生时最大电压和最小电压的比值(VSWR),或最大电流和最小电流的比值(公式一):
&&&&&&& SWR = (VO + VR)/ (VO - VR) = (IO + IR)/ (IO - IR) = 1+|&G|/ 1-|&G|
&&&&&&& WR可以被用来判定传输线阻抗匹配的情况:当SWR=1时,表示没有反射波存在,电磁波能量能完全传递到负载上,也就是传输线阻抗完全匹配;当SWR=&时,表示VO = VR或IO = IR,电磁波能量完全无法传递到负载上,传输线阻抗完全不匹配。SWR测量仪是高频传输线、发射机(transmitter)、天线工程师常使用的参数,与它类似的是应用在有线电视缆线(Cable TV cable)的「返回耗损(Return Loss)」或称作dBRL。两者的差别有二:(1)dBRL=0表示阻抗完全不匹配,dBRL=&表示阻抗完全匹配。(2)SWR测量仪是以发射机为信号来源,自己并没有发射源,但dBRL测量仪是用自己的发射源来测量缆线的阻抗匹配情况。
史密斯图(Smith Chart)介绍:
&&&&&&& 为了达到阻抗匹配的目的,必须使用史密斯图。此图为P. Smith于1939年在贝尔实验室发明的,直到现在,它的图形仍然被广泛地应用在分析、设计和解决传输线的所有问题上。它能将复数的负载阻抗(complex load impedance)映射(map)到复数反射系数(complex reflection coefficients)的&G平面上,这种映射过程称作「正常化(normalization)」。如(图一)所示,大小不同的圆弧代表实数(rL)与虚数(xL)的大小,越往右边阻抗越大,越往左边阻抗越小。乍看之下,史密斯图很类似极坐标(polar coordinate),不过,它的X-Y轴坐标分别是&Gr和&Gi,而且&G= |&G|ej&r =&Gr + j&Gi ,r代表实数(real number),i代表虚数(image number)。在图一中,中心线为电阻值,中心线上方区域为感抗值,中心线下方区域为容抗值,直径和中心线重迭的圆代表不同的实数(rL),中心线两旁的圆弧代表不同的虚数(rL)。正常化负载阻抗(normalized load impedance)zL = ZL/Z0= 1+&G/1-&G,zL= rL+jxL,其实zL就是史密斯图上的复数,它没有计量单位(dimensionless),是由实数rL和虚数xL构成的。负载阻抗ZL就是由小写的zL映射到复数反射系数&G平面上的。史密斯图的圆心代表&G=0,zL=1,ZL= Z0,负载阻抗匹配,如(图三)所示。
&&&&&&& 将阻抗转换到&G平面后,就能得出代表传输线匹配或不匹配的反射系数(公式二):
图一 史密斯Z坐标图
图二 无耗损传输线电路
&&&&&&& 在上式中,&G就是(电压)反射系数,它的定义是:反射波(reflected voltage wave)的电压振幅与入射波(incident voltage wave)的电压振幅之比值;ZL是负载阻抗(load impedance),Z0是特性阻抗(characteristic impedance)。当ZL = Z0时,达到阻抗匹配,&G为零。如(图二)所示,假设ZL = Z0,电压源(Vg)产生的功率几乎可以完全供给负载使用,而从负载反射回电压源的功率非常小。对负载应用而言,必须设法求得特性阻抗,并使负载阻抗等于它。亦即,在图三中的&G必须尽量在绿色区域之中。图三也称为珈玛坐标图(Gamma-centric chart),有别于图一的Z坐标图(Z- centric chart)。
图三 史密斯&G坐标图
&&&&&&& 理想的无耗损(lossless)传输线是依据下列公式来转换负载阻抗ZL(公式三):
ZL cos(l 2/) + j Z0 sin(l 2/)
Z0 cos(l 2/) + j ZL sin(l 2/)
&&&&&&& 在上式中,l是无耗损传输线的长度,l 2/是此传输线长度与波长相比的角度值(radian)。从上式和图二中,可以得出下列重要的结论:
&&&&&&& (1)如果ZL = Z0,则无论传输线的长度大小为何,输入端阻抗Z或Zin永远等于特性阻抗Z0。
&&&&&&& (2)Z是以/2为单位做周期变化。
&&&&&&& (3)正常化输入阻抗(normalized input impedance)zin=Zin/Z0= 1+&Gl/1-&Gl,其中,&Gl 的振幅与电压反射系数&G的振幅一样,但是相角差2&l(&=2&/&),l是传输线长度。所以,&Gl被称为「相移电压反射系数(phase-shifted voltage reflection coefficient)」,而且&Gl =&Ge-j2&l。因此,如果&G转换成(transform)&Gl,zL就被转换为zin了,在史密斯图上的反射系数角位(angle of reflection coefficient in degrees)是以顺时钟方向,随传输线长度l由0最大增加到0.5&,这个方向上的刻度称为「波长朝产生器(wavelengths toward generator;WTG)」方向的刻度,有别于逆时钟方向的「波长朝负载(wavelengths toward load;WTL)」方向的刻度。
&&&&&&& (4)在史密斯图的圆心处划一个圆,它将和实数轴与虚数轴相交于数个点,每个点与圆心的距离相等,这个圆称作「常数|&G|圆」;也叫作「驻波率(standing-wave ratio;SWR)圆」,这是因为驻波率S=1+|&G|/ 1-|&G|。
&&&&&&& 如果今天已知传输线长度l和zL,利用史密斯图,就可以很快地求出zin。
&&&&&&& (5)纯电阻窄频匹配(resistive narrowband match)时,驻波率刚好等于rL和驻波率圆相交的右边接点Pmax。虽然rL和驻波率圆相交的接点有两个Pmax和Pmin,但是左边接点Pmin的rL值小于1,而且驻波率必须大于或等于1,所以Pmin不予考虑。藉由史密斯图和已知的负载阻抗,就可以很快地求得在传输在线最大电压或最小电流、最小电压或最大电流的位置。
&&&&&&& 上述功能,说明了利用史密斯图就能得到负载的复数阻抗之匹配值。
阻抗(impedance)和导纳(admittance)的转换
&&&&&&& 在解决某些类型的传输线问题时,为求方便起见都使用导纳来表示。导纳是阻抗的倒数,其数学定义是:Y=1/Z=G+jB,G称作电导(conductance),B称作电纳。正常化导纳y是正常化阻抗z的倒数,所以y=1-&G/1+&G。如果在史密斯图上顺时钟移转& /4(互成反方向),zL将转换成zL。虽然,Y参数(=[Y][V])的导纳和Z参数([V]=[Z])的阻抗,都只能代表低频电路的特性,但是与代表高频电路特性的S参数([V-]=[S][V+])类似的Y参数是由四种导纳变数构成的,藉由Y参数(一般是从所测量的S参数转换而来)可以得到晶体管闸阻抗之值,这在深次微米设计中是非常重要的。S参数是被用来表示射频微波多端口网络(multiple network)中多电波的电路特性。
史密斯图应用范例
&&&&&&& 应用上述原理和方法,将一般的50-&O无耗损传输线之一端接有负载阻抗ZL =(25+j50)&O,使用史密斯图可以得到:
&&&&&&& (1)电压反射系数:zL= ZL/Z0=(25+j50)/50=0.5+j1,从史密斯图中可以查出反射系数的相角为83&,用尺可以量得反射系数的振幅为0.62;所以,电压反射系数&G= 0.62ej83&。
&&&&&&& (2)电压驻波比(SWR):使用圆规在史密斯图上,以&G=0为圆心,划一个圆(驻波率圆)通过0.62ej83&,这个圆和&Gr相交在两点,其中一点的rL值大于1,为4.26,亦即电压驻波比S=4.26。
&&&&&&& (3)距负载最近的最大电压与最小电压的位置:最大电压在驻波率圆和&Gr相交的点上,查史密斯图,此点的位置是0.25&,负载的位置是0.135&,所以它和负载的距离是lmax=0.25&-0.135&=0.115&;最小电压和最大电压的距离差0.25&,所以它和负载的距离是lmin=0.115&+0.25&=0.365&。
&&&&&&& (4)若此传输线长度为3.3&,可求出其输入阻抗和输入导纳:3.3&除以0.5&后剩余0.3&,从负载阻抗在史密斯图上的位置顺时钟移动(WTG)0.3&,就是输入阻抗的位置。因此,输入阻抗的位置是在0.135&+0.3&=0.435&直线上,它与驻波率圆相交于一点,查史密斯图,此点即是正常化输入阻抗zin=0.28-j0.4,经转换可求得输入阻抗Z in=zinZ0=(0.28-j0.4)*50=(14-j20)&O;从zin顺时钟移动0.25&并与驻波率圆相交于一点,可以得到正常化输入导纳yin=1.15+j1.7,经转换可求得输入导纳Yin=yinY0=yin/ Z0=(1.15+j1.7)/50=(0.023+j0.034)S(全名为Siemens,是导纳的基本计量单位)。
使用史密斯图反求负载阻抗
&&&&&&& 假设:只知道一条50&O无耗损传输线的驻波比S=3,距负载最近的最小电压位置是5cm,其次是20cm,试求负载阻抗。
&&&&&&& 解决方法:因为最小电压的间距为& / 2,所以,& = 40cm。距负载最近的最小电压在史密斯图上的位置就是5/40=0.125&。在史密斯图上划驻波率圆,半径为3,此圆与&Gr相交于两点,rL值小于1的点就是距负载最近的最小电压,在驻波率圆上,从此点逆时钟移动0.125&,可以得到负载的正常化阻抗zL=0.6 - j0.8。经转换后,就可得出负载阻抗ZL=Z0*zL=(30 - j40)&O。
&&&&&&& 阻抗匹配是电路学里的重要议题,也是射频微波电路的重点。一般的传输线都是一端接电源,另一端接负载,此负载可能是天线或任何具有等效阻抗ZL的电路。传输线阻抗和负载阻抗达到匹配的定义,简单说就是:Z0=ZL。在阻抗匹配的环境中,负载端是不会反射电波的,换句话说,电磁能量完全被负载吸收。因为传输线的主要功能就是传输能量和传送电子讯号或数字数据,一个阻抗匹配的负载和电路网络,将可确保传输到最终负载的电磁能量值能达到最大量。&
&&&&&&& 最简单的阻抗匹配方法是设计负载电路使其满足ZL= Z0的条件。可惜这是理想的情况,在设计实务上,因为负载电路必须先满足其它必需的条件,否则负载电路就无法提供应用所需的性能,这通常都会影响它和传输线的阻抗匹配。解决方案是在传输线与最终负载之间加入阻抗匹配网络(impedance-matching network),加入此网络的目的就是为了减少传输线和此网络之间的电波反射作用。如果阻抗匹配网络是无耗损的,而且其输入阻抗ZL等于传输线的特性阻抗Z0,则能量将可以透过它全部到达负载端。
&&&&&&& 阻抗匹配网络可以由数个集成组件(lumped elements)或具有特定长度和终端方式(短路或开路)的数节(sections)传输线构成。若是使用集成组件,通常是选用电容和电感,而不用电阻,这是为了避免奥姆耗损(ohmic losses)。因为阻抗匹配网络必须将负载阻抗ZL= RL +jXL的RL、XL分别与传输线特性阻抗Z0相对应的电阻与电抗值匹配,为了达到这两种转换,它至少需要「两个调整参数」或「两个自由度(two degrees of freedom)」。(图四)是单株短路线(shorted single-stub)阻抗匹配网络,其等效电路如(图五)所示。两个自由度是由图四中,长度各为d和l的两节传输线提供的。
图四 单株短路线阻抗匹配网络
&&&&&&& 因为此单株阻抗匹配网络是以并联的方式形成,所以也称作「分路脚线(shunt stub)」。计算它时,使用导纳Y会比使用阻抗Z方便。
&&&&&&& 其匹配程序是由两个基本步骤构成的:(1)选定d的长度:藉此将负载导纳YL转换成Yd,Yd = Y0 + jB。(2)选定l的长度:藉此将输入导纳Ys转换等于-jB。
&&&&&&& 如图五所示,因为Yin= Yd+Ys,所以输入的等效导纳Yin= Y0,这就达到阻抗匹配的目的了。简单地说,阻抗匹配网络的目的就是要消除输入阻抗的电抗(reactance)X值。
图五 单株短路线阻抗匹配网络的等效电路
阻抗匹配网络设计范例
&&&&&&& 一条50&O无耗损传输线一端连接天线,此天线的阻抗是ZL=(25-j50)&O,试求单株短路脚线的位置和长度d和l。
&&&&&&& 解决方法如下:
&&&&&&& (1)求得正常化负载阻抗zL=ZL/Z0=0.5 - j1,在史密斯图中可以找到zL的位置。
&&&&&&& (2)以圆规在史密斯图上,以zL的振幅为半径划驻波率圆。
&&&&&&& (3)在zL相反方向的驻波率圆上,可以找到负载导纳yL=0.4+j0.8,它是位于史密斯图上顺时钟0.115&直线和驻波率圆相交的点上。
&&&&&&& (4)因为yin=Yin/Y0,所以yin必须等于1,才能使Yin= Y0,即yin = ys+yd = 1。史密斯图上的gL=1圆和驻波率圆相交于两个点,这两个点可以求得两个不同的yd,亦即会有两组解决方案。查史密斯图后,可以发现这两个点分别是:1+j1.58、1 - j1.58。
&&&&&&& (5)当yin = 1+j1.58时,它是在史密斯图顺时钟0.178&的位置。d=(0.178-0.115) &=0.063&,这就是短路脚线和负载之间的距离。因为yin = ys+yd,所以可以求得ys= -j1.58,位于史密斯图顺时钟0.34&的位置上。因为短路的正常化电导是&,所以,短路脚在线的正常化负载电导是位于史密斯图顺时钟0.25&的位置上,短路脚线到分路点的距离l就等于(0.34-0.25) &=0.09&。
&&&&&&& (6)同理,当yin = 1- j1.58时,可以求得d=0.207&、ys= j1.58、l=0.41&。
&&&&&&& 虽然,使用离散(discrete)组件也可以达到阻抗匹配的目的,但是当频率不断增加或成几何级数衰减时,传输线和脚线(stub)的成本效益比最高。脚线是传输线的一小部份,它只是单纯地被用来消除输入电抗,对其它电路组件是无害的。它以两种身份加入:一是开路ZL=&、一是短路ZL=0。从前面的Z方程式中可以发现,当使用开路脚线时,输入阻抗等于-Z0cot(l*2/)j,这是一个电容;当使用短路脚线时,输入阻抗等于Z0 tan(l*2/)j,这是一个电感。添加脚线之后,自然就具备了与离散电抗组件(电感和电容)相同的性能,而且效果更好、成本更省。在许多射频调谐器(RF tuner)、消除电磁干扰(EMI)、天线的电路中,除了常见到离散电抗组件以外,常常还可以看到一些短短一截的脚线,其目的就是要消除输入电抗,使输入阻抗和传输线的特性阻抗能够完全匹配。
&&&&&&& 上面的计算,如今大多数都是使用仪器自动测量,例如:网络分析仪(network analyzer)、时域反射测量仪(TDR;Time Domain Reflectometry),再经软件运算求出。虽然如此,身为射频微波电路设计者必须清楚了解其背后的原理和方法,才能克服随时可能发生的特殊传输线问题。
传输线设计是高频有线网络、射频微波工程、雷射光纤通讯等光电工程的基础,为了能让能量可以在通讯网路中无损耗地传输,良好的传输线设计是重要关键。
&&&&&&& 国内目前有许多原是模拟产品设计制造的业者,正试图转型跨入射频微波电路的领域,例如:电源供应器、计算机监视器、家电、网络通讯芯片设计等业者,但是,大都仍然停留在过去必须向国外原厂要参考电路图的习惯,缺乏如传输线设计等基础技能和独自开发设计的经验,这是业者必须努力自我提升的地方。
Tel: 3-8057
备案号: 苏ICP备号-2提示:收费会员的信息将去掉上面和下面详细说明里的广告。
供应爆脂减肥设备|M8三级射频强声减肥仪|卓然科技出品
点击图片查看原图
单价:面议
供货总量:
发货期限:自买家付款之日起
3 天内发货
有效期至:长期有效
所在地:河南 郑州市
供应爆脂减肥设备|M8三级射频强声减肥仪|卓然科技出品 本条信息网址:http://www./sell//info_2580921.html
&&&& 供应爆脂减肥仪|M8三级射频强声减肥仪|卓然科技出品|有效减去多余脂肪。
一、仪器工作原理:
&&&&&& M8三级射频强声减肥仪器有效促进组织的新陈代谢、击退橙皮脂肪、收紧肌肤、增强肌肤弹性等,且效果持久。(最新减肥仪器)同时还可提升肌肉弹性及促进细胞的新陈代谢。此最新减肥仪器利用聚集强声波头发射出频率达40000HZ的强烈声波,极速振动脂肪细胞,在脂肪细胞内外产生无数真空气穴,强力撞击脂肪细胞,令脂肪细胞膜产生内向爆破,使甘油三脂分解成甘油和游离脂肪酸,再由频率达0.5MHZ的射频波,使分解的甘油和游离脂肪酸通过肝肠循环排出体外,最后由真空射频及能量电极定位爆脂收紧,在物理上称为&空穴现象&.细胞内外微空隙的内爆结果将引起分子运动增强,以致达到一个高能水平,最后导致脂肪细胞的破裂,从而达到减肥美体的效果。
二、仪器功能与治疗原理:
1、强力爆脂、去除脂肪
此款最新减肥仪器利用聚集了强烈声波的强声波头发射的频率达40000HZ的声波,进入人体后可使人体脂肪细胞产生一种强烈的撞击作用及脂肪细胞间的摩擦运动,能有效消耗热量,消耗细胞的水份,使脂肪细胞缩小,另外当声波震动时能使细胞间产生强裂撞击,细胞瞬间爆破,脂肪细胞减少,从而达到去除脂肪效果。
2、溶解脂肪、淋巴排毒、紧致肌肤、增强皮肤弹性
以最先进的射频技术与能量射频于一身,可以深层直达脂肪体,具有靶向定位射频输出的卓越性,使脂肪细胞组织在快速活跃的状态下,产生细胞体的热能摩擦热,使局部温度升高,通过汗腺,肝肠循环及淋巴将体内的多余脂肪及毒素排出体外,以达到溶解脂肪的功效。
此款最新减肥仪器利用镶嵌的不同粗细钻石颗粒,藉由可控深浅技术顺着皮肤纹理走向进行摩擦,并配合真空抽吸可调节吸力强度,透过负压强力按摩,直破厚脂肪,效果明显。最新减肥仪器加强血液循环,加快分解脂肪及带走废物加强消除橙皮脂肪,有效改善蜂窝组织能有效去除顽固厚脂肪,而且可增加减肥产品的充分吸收。
3、改善桔皮组织、纤体塑形
&&&&&& 通过最新减肥仪器能量电极所产生的生物波刺激身体相应的穴位,利用不同的频率和脉冲,在多种物理电子协同的交互下,对脂肪体进行有效的刺激,让身体运动起来,从而再次消耗热量和脂肪,以达到塑身美体的功效。
4、最新减肥仪器面部除皱,收紧,提升
&&&&&& m8最新减肥仪器采用了一个电容耦合电极来传送无线电波能量并产生一个电场穿过皮肤表层进入皮下组织。在 450khz的高频率下,这个电场每秒钟变换极性45万次。为了回复电极的快速变换,皮肤内的电荷粒子在同样的频率上会变换方向。这时皮下组织的自然电阻会运动产生热能,最新减肥仪器是利用真皮层胶原质在摄氏六十至七十度的温度时,会产生立即收缩的特性,可以让松弛的肌肤在治疗后,马上就感受到向上拉提、紧实的拉皮效果。 当源源不断产生胶原质时,就会使皮肤真皮层的厚度和密度增加,填平皱纹,消除疤痕,恢复皮肤弹性和光泽,使皮肤看起来白皙嫩滑。随着胶原质的增长,新鲜的皮肤在手术区生长,同时大量再生的细胞也将填平皱纹。另外还可以将皱纹区失去弹性和角质层加厚的皮层分离出去,这也会带动周边的皮肤进行更新。
三、仪器治疗范围:
&收紧手臂、小腿、大腿、臀部、腰背部、腹部肌肉,重塑身形。
&最新减肥仪器针对不同程度桔皮脂肪组织给予有效改善和治疗。
&舒缓减压镇痛(例如关节痛、坐骨神经痛),对皮肤组织进行有规律的机械有氧运动,迅速缓解压力,消除疲劳。
&深层且高强的淋巴引流将身体组织中的代谢废物排除,达到全身淋巴排毒。
&循环活化细胞,促进代谢作用,使胶原蛋白及弹性纤维增生100%改善面部及身体皮肤。&紧致肌肤、皮肤拉提、肌肤细致、脸形雕塑。
四、仪器特点:
1、不用开刀及麻醉即可完成流程。
2、不会造成凹凸不平的现象。
3、不会出血及出现肿瘀现象。
4、最新减肥仪器绝无副作用,效果显著,不会反弹。
5、无创无伤,不影响正常工作生活。
销售热线:&&&&&&&&&&&&& QQ:
联系人 李向东&
所在地:河南 郑州市
地址:北京市大兴区黄村镇清城名苑北区27号楼B座2102
免责声明:供应爆脂减肥设备|M8三级射频强声减肥仪|卓然科技出品信息是由北京卓然泰瑞自行发布,中国易发网不担保该信息的准确性,完整性和及时性,也不承担您发生交易带来的任何损害,交易前请慎重考虑,中国易发网将保留全部或部分删除上述信息的权利。本站建议使用支付宝担保交易。提示:数码产品、食品饮料、充值卡、化工原料、化妆品、电动车、婴儿用品、洗涤日用品等为骗局多发区。风险防范建议:为保障您的利益,建议优先加入。请不要随意给陌生人汇款,以免上当受骗!。}

我要回帖

更多关于 m8怎么恢复出厂设置 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信